Skip to main content
Log in

An improving method for inferring interactions of nonlinear systems with linearizable hidden variables

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Detecting the interactions in a network from measurable data is a challenging practical issue. In real systems, the state variables are not only affected by their local dynamics and coupling functions, but also by unknown effects, i.e., hidden variables. Many researchers have studied complex networks containing hidden variables. Shi et al. proposed a method to reconstruct the interactions in dynamic systems with hidden variables, which, however, exhibited large errors in reconstructing strongly nonlinear systems. In this paper, we proposed an improved method for reconstructing the systems with linearized hidden variables by introducing expanded variables and best square approximation and compared it with the original method. The comparison results show that our improving method can effectively enhance the accuracy of detecting the interactions in strongly nonlinear systems and reduce the reconstruction error of corresponding coefficients. Numerical simulation results also verify the robustness of our method in reconstructing strongly nonlinear systems. In addition, we also discussed the main influencing parameters of the method.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

The manuscript has associated data in a data repository. [Authors’ comment: The data that support the findings of this study are available from the corresponding author upon reasonable request.]

References

  1. H.J. Park, K. Friston, Science 342(6158), 1238411 (2013)

    Article  Google Scholar 

  2. O. Sporns, Ann. N. Y. Acad. Sci. 1224(1), 109 (2011)

    Article  ADS  Google Scholar 

  3. J.D. Power, A.L. Cohen, S.M. Nelson, G.S. Wig, K.A. Barnes, J.A. Church, A.C. Vogel, T.O. Laumann, F.M. Miezin, B.L. Schlaggar et al., Neuron 72(4), 665 (2011)

    Article  Google Scholar 

  4. M.E. Newman, Phys. Rev. E 66(1), 016128 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  5. V. Isham, S. Harden, M. Nekovee, Phys. A Stat. Mech. Appl. 389(3), 561 (2010)

    Article  Google Scholar 

  6. E.J. Roberts, in 1977 IEEE Conference on Decision and Control including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and Applications (IEEE, 1977), pp. 639–644

  7. M.E. Newman, A.L.E. Barabási, D.J. Watts, The structure and dynamics of networks (Princeton University Press, Princeton, 2006)

    MATH  Google Scholar 

  8. M.E. Newman, SIAM Rev. 45(2), 167 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Timme, J. Casadiego, J. Phys. A. Math. Theor. 47(34), 343001 (2014)

    Article  Google Scholar 

  10. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.U. Hwang, Phys. Rep. 424(4–5), 175 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  11. J. Casadiego, D. Maoutsa, M. Timme, Physical review letters 121(5), 054101 (2018)

    Article  ADS  Google Scholar 

  12. Y.V. Zaytsev, A. Morrison, M. Deger, J. Comput. Neurosci. 39(1), 77 (2015)

    Article  MathSciNet  Google Scholar 

  13. N. Dori, P. Piedrahita, Y. Louzoun, Eur. Phys. J. B 92(2), 1 (2019)

    Article  MathSciNet  Google Scholar 

  14. W.X. Wang, Y.C. Lai, C. Grebogi, J. Ye, Phys. Rev. X 1(2), 021021 (2011)

    Google Scholar 

  15. F. Goetze, P.Y. Lai, Phys. Rev. E 100(1), 012121 (2019)

    Article  ADS  Google Scholar 

  16. J. Casadiego, M. Nitzan, S. Hallerberg, M. Timme, Nat. Commun. 8(1), 1 (2017)

    Article  Google Scholar 

  17. M.E. Newman, Phys. Rev. E 98(6), 062321 (2018)

    Article  ADS  Google Scholar 

  18. R. Shi, G. Hu, S. Wang, Communi. Nonlinear Sci. Numer. Simul. 72, 407 (2019)

    Article  ADS  Google Scholar 

  19. S. Hempel, A. Koseska, Z. Nikoloski, Euro. Phys. J. B 86(6), 1 (2013)

    Article  Google Scholar 

  20. K.M. Gerke, M.V. Karsanina, R.V. Vasilyev, D. Mallants, EPL (Europhys. Lett.) 106(6), 66002 (2014)

    Article  ADS  Google Scholar 

  21. Z. Zhang, Y. Chen, Y. Mi, G. Hu, Phys. Rev. E 99(4), 042311 (2019)

    Article  ADS  Google Scholar 

  22. E. Benedetti, M. Pučić-Baković, T. Keser, N. Gerstner, M. Büyüközkan, T. Štambuk, M.H. Selman, I. Rudan, O. Polašek, C. Hayward et al., Nat. Commun. 11(1), 1 (2020)

    Article  Google Scholar 

  23. J. Runge, Chaos: an interdisciplinary. J. Nonlinear Sci. 28(7), 075310 (2018)

    Google Scholar 

  24. D. Zhou, Y. Xiao, Y. Zhang, Z. Xu, D. Cai, Phys. Rev. Lett. 111(5), 054102 (2013)

    Article  ADS  Google Scholar 

  25. Z. Levnajić, A. Pikovsky, Phys. Rev. Lett. 107(3), 034101 (2011)

    Article  ADS  Google Scholar 

  26. R. Shi, C. Deng, S. Wang, EPL (Europhys. Lett.) 124(1), 18002 (2018)

    Article  ADS  Google Scholar 

  27. C. Deng, W. Jiang, S. Wang, Chaos: an interdisciplinary. J. Nonlinear Sci. 31(3), 033146 (2021)

    Google Scholar 

  28. X. Han, Z. Shen, W.X. Wang, Z. Di, Phys. Rev. Lett. 114(2), 028701 (2015)

    Article  ADS  Google Scholar 

  29. H. Tam, E.S. Ching, P.Y. Lai, Phys. A. Stat. Mech. Appl. 502, 106 (2018)

    Article  Google Scholar 

  30. R. Shi, W. Jiang, S. Wang, Chaos: an interdisciplinary. J. Nonlinear Sci. 30(1), 013138 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in the preparation of the theoretical derivation and numerical simulations of the manuscript, as well as in the reading and confirmation of the final manuscript.

Corresponding author

Correspondence to Shihong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Wang, Z. & Wang, S. An improving method for inferring interactions of nonlinear systems with linearizable hidden variables. Eur. Phys. J. B 94, 138 (2021). https://doi.org/10.1140/epjb/s10051-021-00148-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00148-1

Navigation