Skip to main content
Log in

Characterization of squeezed thermal baths via qubit probe

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper, we study the dynamics of quantum Fisher information of a qubit interacting with a squeezed thermal environment. We obtain the optimal initial state of the qubit, the temperature of the environment, and the interaction time, which maximize quantum Fisher information. Based on the ohmicity of the environment, we compare the dynamics of quantum Fisher information in ohmic, sub-ohmic, and super-ohmic regimes of the environment. We investigate the estimation of temperature, squeezing amplitude and phase of the environment in detail by studying the behavior of quantum Fisher information. Furthermore, it is shown that the behavior of quantum Fisher information strongly depends on the ohmicity parameter and also the squeezing amplitude of the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There is no experimental data associated with the manuscript.]

References

  1. C.W. Helstrom, Quantum Detection and Estimation Theory (Academic Press, New York, 1976)

    MATH  Google Scholar 

  2. A.S. Holevo, Statistical Structure of Quantum Theory (Springer, Berlin, 2001)

    Book  MATH  Google Scholar 

  3. R.A. Fisher, Proc. Camb. Phil. Soc. 22, 700 (1925)

    Article  ADS  Google Scholar 

  4. M. Javed, S. Khan, S.A. Ullah, Quant. Inf. Proc. 17, 53 (2018)

    Article  Google Scholar 

  5. M.G.A. Paris, Phys. A 413, 256 (2014)

    Article  MathSciNet  Google Scholar 

  6. C. Benedetti, F. Buscemi, P. Bordone, M.G.A. Paris, Phys. Rev. A 89, 032114 (2014)

    Article  ADS  Google Scholar 

  7. C. Benedetti, M.G.A. Paris, Phys. Lett. A 378, 2495–2500 (2014)

    Article  ADS  Google Scholar 

  8. W.K. Wootters, Phys. Rev. D 23, 357 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  9. S. Song, H. Luo, S. Fu, Quant. Inf. Process. 16, 91 (2017)

    Article  ADS  Google Scholar 

  10. P. Hauke, M. Heyl, L. Tagliacozzo, P. Zoller, Nature Phys. 12, 778–782 (2016)

    Article  ADS  Google Scholar 

  11. S.L. Braunstein, C.M. Caves, Phys. Rev. Lett. 72, 3439 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  12. X.M. Lu, X.G. Wang, C.P. Sun, Phys. Rev. A 82, 042103 (2010)

    Article  ADS  Google Scholar 

  13. T.-L. Wang et al., New J. Phys. 16, 063039 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  14. Y.-R. Zhang et al., Phy. Rev. Lett. 120, 250501 (2018)

    Article  ADS  Google Scholar 

  15. Jian Ma, Xiaoguang Wang, C.P. Suna, Franco Nori, Phys. Rep. 509, 89–165 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  16. Qing-Shou Tan, Jie-Qiao Liao, Xiaoguang Wang, Franco Nori, Phy. Rev. A 89, 053822 (2014)

    Article  ADS  Google Scholar 

  17. X.-Y. Lü et al., Phy. Rev. Lett. 114, 093602 (2015)

    Article  ADS  Google Scholar 

  18. S. Razavian, C. Benedetti, M. Bina, Y. Akbari-Kourbolagh, M.G.A. Paris, Eur. Phys. J. Plus 134, 284 (2019)

    Article  Google Scholar 

  19. S. Razavian, M.G.A. Paris, Phys. A 525, 825 (2019)

    Article  MathSciNet  Google Scholar 

  20. L. Xin-You, J.-Q. Liao, L. Tian, F. Nori, Phys. Rev. A 91, 013834 (2015)

    Article  ADS  Google Scholar 

  21. W. Zhong, Z. Sun, J. Ma, X.G. Wang, F. Nori, Phys. Rev. A 87, 022337 (2013)

    Article  ADS  Google Scholar 

  22. G.Y. Wang, Y.N. Guo, K. Zeng, Chin. Phys. B 24, 114201 (2015)

    Article  ADS  Google Scholar 

  23. K. Yan, Y.Q. Xie, Y.M. Haung, X. Hao, Comm. Theor. Phys. 67, 261 (2017)

    Article  ADS  Google Scholar 

  24. C. Benedetti, F.S. Sehdaran, M.H. Zandi, M.G.A. Paris, Phys. Rev. A 97, 12126 (2018)

    Article  ADS  Google Scholar 

  25. N.S. Williams, K. Le Hur, A.N. Jordan, J. Phys. A: Math. Th. 44, 385003 (2011)

    Article  Google Scholar 

  26. M. Kliesch, C. Gogolin, M.J. Kastoryano, A. Riera, J. Eisert, Phys. Rev. X 4, 031019 (2014)

    Google Scholar 

  27. J. Millen, A. Xuereb, New J. Phys. 18, 011002 (2016)

    Article  ADS  Google Scholar 

  28. S. Vinjanampathy, J. Anders, Contemp. Phys. 57, 545 (2016)

    Article  ADS  Google Scholar 

  29. A. De Pasquale, D. Rossini, R. Fazio, V. Giovannetti, Nat. Commun. 7, 12782 (2016)

    Article  ADS  Google Scholar 

  30. A. De Pasquale, K. Yuasa, V. Giovannetti, Phys. Rev. A 96, 012316 (2017)

    Article  ADS  Google Scholar 

  31. B. Farajollahi, M. Jafarzadeh, H. Rangani Jahromi, M. Amniat-Talab, Quant. Inf. Proc. 17, 119 (2018)

    Article  Google Scholar 

  32. S. Campbell, M. Mehboudi, G. De Chiara, M. Paternostro, New J. Phys. 19, 103003 (2017)

    Article  ADS  Google Scholar 

  33. G. De Palma, A. De Pasquale, V. Giovannetti, Phys. Rev. A 95, 052115 (2017)

    Article  ADS  Google Scholar 

  34. M. Brunelli, S. Olivares, M. Paternostro, M.G.A. Paris, Phys. Rev. A 86, 012125 (2012)

    Article  ADS  Google Scholar 

  35. T.H. Johnson, F. Cosco, M.T. Mitchison, D. Jaksch, S.R. Clark, Phys. Rev. A 93, 053619 (2016)

    Article  ADS  Google Scholar 

  36. M. Hohmann, F. Kindermann, T. Lausch, D. Mayer, F. Schmidt, A. Widera, Phys. Rev. A 93, 043607 (2016)

    Article  ADS  Google Scholar 

  37. M. Brunelli, S. Olivares, M.G.A. Paris, Phys. Rev. A 84, 032105 (2011)

    Article  ADS  Google Scholar 

  38. P. Neumann et al., Nano Lett. 13, 2738 (2013)

    Article  ADS  Google Scholar 

  39. G. Kucsko et al., Nature 500, 54–58 (2013)

    Article  ADS  Google Scholar 

  40. D.M. Toyli et al., Proc. Natl. Acad. Sci. USA 110, 8417 (2013)

    Article  ADS  Google Scholar 

  41. W. Zhang, C.P. Sun, Nori Franco, Phys. Rev. E 82, 041127 (2010)

    Article  ADS  Google Scholar 

  42. A.M. Zagoskin, E. llichev, F. Nori, Phys. Rev. A 85, 2012 (2012)

    Article  Google Scholar 

  43. H.T. Quan, L. Yu-xi, C.P. Sun, F. Nori, Phys. Rev. E 76, 031105 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  44. A.M. Zagoskin, S. Savel’ev, F. Nori, F.V. Kusmartsev, Phys. Rev. B 86, 014501 (2012)

    Article  ADS  Google Scholar 

  45. F. Pennini, A. Plastino, Phys. Lett. A 326, 20–26 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  46. A. Ullah, K. Khan, J. Quant. Inf. Sci. 11, 13–23 (2021)

  47. U. Weiss, Quantum Dissipative Systems (World Scientific, Singapore, 1999)

    Book  MATH  Google Scholar 

  48. P.M.V.B. Barone, A.O. Caldeira, Phys. Rev. A 43, 57 (1991)

    Article  ADS  Google Scholar 

  49. J. Paavola, J. Piilo, K.-A. Suominen, S. Maniscalco, Phys. Rev. A 79, 052120 (2009)

    Article  ADS  Google Scholar 

  50. C. Benedetti, F. Buscemi, P. Bordone, M.G.A. Paris, Phys. Rev. A 87, 052328 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asghar Ullah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, A., Anwar, S.J. Characterization of squeezed thermal baths via qubit probe. Eur. Phys. J. B 94, 134 (2021). https://doi.org/10.1140/epjb/s10051-021-00145-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00145-4

Navigation