Skip to main content
Log in

Simulation of photoexcitation dynamics in conjugated polymer using Ehrenfest method with configuration interaction singles

  • Reply to Comment - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Ehrenfest method is commonly used for simulating photoexcitation dynamics in conjugated polymers. However, due to the expensive computational cost, the calculation of electronic excited states for long conjugated polymer chains in Ehrenfest simulations is still at the level of Hartree–Fock approximation. Here, we develop an approach to perform Ehrenfest simulations in terms of configuration interaction singles (CIS) that is beyond the Hartree–Fock approximation. With this approach, we simulate the relaxations of various photoinduced excited states in a single polymer chain. The simulations show that the photoinduced excited states relax to a mixed state very fast, in which the lowest excited state is dominated.In the excited-state relaxation processes, the electron and hole are not separated. We have also studied the exciton dissociation by external electric field, and find that the critical electric field to dissociate the exciton is much lower than that calculated by previous Ehrenfest simulations in terms of low-level excited-state calculations.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data that support the findings of this study are available on request from the corresponding author.]

References

  1. N.L. Doltsinis, Quantum simulations of complex many-body systems: from theory to algorithms. NIC Ser. 10, 377 (2002)

    Google Scholar 

  2. K. Saita, M.G.D. Nix, D.V. Shalashilin, Phys. Chem. Chem. Phys. 15, 16227 (2013)

    Article  Google Scholar 

  3. J.L. Brédas, J. Cornil, D. Beljonne, D.A. Dos Santos, Z. Shuai, Acc. Chem. Res. 32, 267 (1999)

    Article  Google Scholar 

  4. A. Dreuw, M. Head-Gordon, Chem. Rev. 105, 4009 (2005)

    Article  Google Scholar 

  5. L. González, D. Escudero, L. Serrano-Andrés, Chem. Phys. Chem. 13, 28 (2012)

    Article  Google Scholar 

  6. Z. An, C.Q. Wu, X. Sun, Phys. Rev. Lett. 93, 216407 (2004)

    Article  ADS  Google Scholar 

  7. S. Stafström, J. Lumin. 112, 357 (2005)

    Article  Google Scholar 

  8. Å. Johansson, S. Stafström, Phys. Rev. B 68, 035206 (2003)

    Article  ADS  Google Scholar 

  9. L.A. Ribeiro, W.F. Da Cunha, P.H. Oliveira Neto, R. Gargano, G.M.E. Silva, Chem. Phys. Lett. 580, 108 (2013)

    Article  ADS  Google Scholar 

  10. R. Meng, Y. Li, K. Gao, W. Qin, L. Wang, J. Phys. Chem. C 121, 2054620552 (2017)

    Google Scholar 

  11. M. Zhang, W. Qin, Y. Li, K. Gao, J. Mater. Chem. C 8, 11274 (2020)

    Article  Google Scholar 

  12. Y. Meng, B. Di, X. Liu, Z. An, C. Wu, J. Chem. Phys. 128, 184903 (2008)

    Article  ADS  Google Scholar 

  13. Y. Meng, X.J. Liu, B. Di, Z. An, J. Chem. Phys. 131, 539 (2009)

    Article  Google Scholar 

  14. Y. Meng, Z. An, Eur. Phys. J. B 74, 313 (2010)

    Article  ADS  Google Scholar 

  15. Z. Sun, S. Stafström, J. Chem. Phys. 135, 074902 (2011)

    Article  ADS  Google Scholar 

  16. K. Gao, S. Xie, S. Yin, D. Liu, Org. Electron. 12, 1010 (2011)

    Article  Google Scholar 

  17. W.F.D. Cunha, L.A. Ribeiro, A.L.D.A. Fonseca, R. Gargano, G.M.E. Silva, J. Phys. Chem. C 118, 23451 (2014)

    Article  Google Scholar 

  18. C. Li, Y. Li, M. Zhang, L. Xu, K. Gao, J. Phys. Chem. C 122, 2067620683 (2018)

    Google Scholar 

  19. R.P. Miranda, A.J. Fisher, L. Stella, A.P. Horsfield, J. Chem. Phys. 134, 244101 (2011)

    Article  ADS  Google Scholar 

  20. R.P. Miranda, A.J. Fisher, L. Stella, A.P. Horsfield, J. Chem. Phys. 134, 781 (2011)

    Google Scholar 

  21. Z. Sun, S. Stafström, J. Chem. Phys. 136, 414 (2012)

    Article  Google Scholar 

  22. Z. Sun, S. Stafström, J. Chem. Phys. 138, 164905 (2013)

    Article  ADS  Google Scholar 

  23. Z. Sun, S. Stafström, Phys. Rev. B 90, 115420 (2014)

    Article  ADS  Google Scholar 

  24. X.J. Liu, Y.L. Zhang, Z. An, Org. Electron. 14, 2692 (2013)

    Article  Google Scholar 

  25. Y.L. Zhang, X.J. Liu, Z. Sun, Z. An, J. Chem. Phys. 138, 174906 (2013)

    Article  ADS  Google Scholar 

  26. Y.L. Zhang, X.J. Liu, Z. An, Org. Electron. 28, 6 (2016)

    Article  Google Scholar 

  27. J.B. Foresman, M. Head-Gordon, J.A. Pople, M.J. Frisch, J. Phys. Chem. 96, 135 (1992)

    Article  Google Scholar 

  28. R.M. Shroll, W.D. Edwards, Int. J. Quant. Chem. 56, 395 (1995)

    Article  Google Scholar 

  29. I. Gadaczek, K. Krause, K.J. Hintze, T. Bredow, J. Chem. Theory Comput. 7, 3675 (2011)

    Article  Google Scholar 

  30. I. Gadaczek, K. Krause, K.J. Hintze, T. Bredow, J. Chem. Theory Comput. 8, 986 (2012)

    Article  Google Scholar 

  31. Y. Yamaguchi, H.F. Schaefer, Handbook of High-resolution Spectroscopy (2011)

  32. O.G. Reid, R.D. Pensack, Y. Song, G.D. Scholes, G. Rumbles, Chem. Mat. 26, 561 (2013)

    Article  Google Scholar 

  33. Z. Sun, S. Li, S. Xie, Z. An, J. Phys. Chem. C 124, 18894 (2020)

    Article  Google Scholar 

  34. Rl Fu, Gy Guo, X. Sun, Phys. Rev. B 62, 15735 (2000)

    Article  ADS  Google Scholar 

  35. K. Gao, X. Liu, D. Liu, S. Xie, Phys. Rev. B 75, 205412 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Acknowledgements This work was supported by Natural Science Foundation of Zhejiang Province (LY19A040007), and National Natural Science Foundation of China (NSF) (11974212).

Author information

Authors and Affiliations

Authors

Contributions

ZS did all calculations, analyzed the data and wrote the manuscript. SL analyzed the data. SX and ZA checked the results and writing of this paper.

Corresponding author

Correspondence to Zhen Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Li, S., Xie, S. et al. Simulation of photoexcitation dynamics in conjugated polymer using Ehrenfest method with configuration interaction singles. Eur. Phys. J. B 94, 117 (2021). https://doi.org/10.1140/epjb/s10051-021-00128-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00128-5

Navigation