Skip to main content
Log in

DFT-based investigation of the structural, magnetic, electronic, half-metallicity and elastic properties in the all-d heusler compounds: the case of \(\hbox {Co}_{\mathrm {2}}\hbox {VZn}\) and CoVZn

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The aim of this work is to predict some physical properties of the new type of Heusler alloys. We perform an ab-initio calculation to determine the structural, electronic, elastic properties of the full-Heusler \(\hbox {Co}_{\mathrm {2}}\hbox {VZn}\) and the half-Heusler CoVZn alloys. The calculations are based on the full-potential linearized augmented plane wave (FP-LAPW) method implemented in WIEN2k code, adopting three different exchange potentials. Based on the WC-GGA\(+\)U approximation, we showed that the studied alloys are ferromagnetic materials. The calculation results of electronic properties obtained by mBJ-LDA shows that the \(\hbox {Co}_{\mathrm {2}}\hbox {VZn}\) compound is a half-metal with a magnetic moment obeys the Slater Pauling rule. This result represents a genuine distinction compared to the all-d Heusler compounds studied in the available literature. Furthermore, the calculations using the WC-GGA\(+\)U confirm the mechanical stability of both materials. The Young’s modulus E exhibits a strong anisotropy in the monocrystalline state.

Graphic Abstract

Investigation of the physical properties of Heulser alloys \(\hbox {Co}_{\mathrm {2}}\)VZn and CoVZn as candidates for spintronic applications

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The authors declare that all data supporting the finding of this study are available within the article.]

References

  1. F. Heusler, Verh. DPG 5, 219 (1903)

    Google Scholar 

  2. Y. Gelbstein, N. Tal, A. Yarmek, Y. Rosenberg, M.P. Dariel, S. Ouardi, B. Balke, C. Felser, M. Köhne, J. Mater. Res. 26, 1919–1924 (2011)

    Article  ADS  Google Scholar 

  3. C. Fu, S. Bai, Y. Liu, Y. Tang, L. Chen, X. Zhao, T. Zhu, Nat. Commun. 6, 1–7 (2015)

    Google Scholar 

  4. P.C. Canfield, J.D. Thompson, W.P. Beyermann, A. Lacerda, M.F. Hundley, E. Peterson, Z. Fisk, J. Appl. Phys. 70, 5800 (1991)

    Article  ADS  Google Scholar 

  5. D. Shrivastava, S.P. Sanyal, Solid State Commun. 273, 1–4 (2018)

    Article  ADS  Google Scholar 

  6. J.H. Wernick, G.W. Hulla, T.H. Geballe, J.E. Bernardinia, J.V. Waszczak, Mater. Lett. 2, 90–92 (1983)

    Article  Google Scholar 

  7. N.P. Butch, P. Syers, K. Kirshenbaum, A.P. Hope, J. Paglione, Phys. Rev. B. 84, 220504 (2011)

    Article  ADS  Google Scholar 

  8. M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 61, 2472–2475 (1988)

    Article  ADS  Google Scholar 

  9. R.A. de Groot, F.M. Müeller, P.G. van Engen, K.H.J. Buschow, Phys. Rev. Lett. 50, 2024 (1983)

    Article  ADS  Google Scholar 

  10. W.H. Wang, M. Przybylski, W. Kuch, L.I. Chelaru, J. Wang, Y.F. Lu, J. Barthel, H.L. Meyerheim, J. Kirschner, Phy. Rev. B 71, 144416 (2005)

    Article  ADS  Google Scholar 

  11. S. Khenchoul, A. Guibadj, B. Lagoun, A. Chadli, S. Maabed, J. Supercond. Nov. Magn. 29, 2225–2233 (2016)

    Article  Google Scholar 

  12. S. Sanvito et al., Sci. Adv. 3, e1602241 (2017)

    Article  ADS  Google Scholar 

  13. Z. Chen, H. Wei, H. Xu, Y. Gao, T. Yang, X. Wang, X. Chen, Spin. 3, 1950012 (2019)

    Article  Google Scholar 

  14. K. Özdoğan, I.V. Maznichenko, S. Ostanin, E. Şaşıoğlu, A. Ernst, I. Mertig et al., J. Phys. D Appl. Phys. 52, 205003 (2019)

    Article  ADS  Google Scholar 

  15. D.J. Singh, L. Nordstrom, Planewaves, “Pseudopotentials and the LAPW Method”, 2nd edn. (Springer, Berlin, 2006)

    Google Scholar 

  16. P. Blaha, K. Schwarz, P. Sorantin, S.K. Trickey, Comput. Phys. Commun. 59, 339–443 (1990)

    Article  Google Scholar 

  17. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  18. J.P. Perdew, Y. Wang, Phys. Rev. B. 45, 13244 (1992)

    Article  ADS  Google Scholar 

  19. F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)

    Article  ADS  Google Scholar 

  20. H.C. Kandpal, G.H. Fecher, C. Felser, J. Phys. D Appl. Phys. 40, 1507–1523 (2006)

    Article  ADS  Google Scholar 

  21. F. D. Murnaghan, “Physics: f. d. murnaghan,” pp. 244–247 (1944)

  22. J.C. Slater, Phys. Rev. 49, 931–937 (1936)

    Article  ADS  Google Scholar 

  23. L. Pauling, Phys. Rev. 54, 899–904 (1938)

    Article  ADS  Google Scholar 

  24. L. Boumia et al., Chin. J. Phys. 59, 281–290 (2019)

    Article  Google Scholar 

  25. M. Asaad, J. Buckman, R.I. Smith, J.-W.G. Bos, J. Solid State Chem. 276, 181–189 (2019)

    Article  ADS  Google Scholar 

  26. I. Galanakis, P.H. Dederichs, N. Papanikolaou, Phy. Rev. B. 66, 174429 (2002)

    Article  ADS  Google Scholar 

  27. M. Born, Proc. Camb. Philos. Soc. 36, 160–172 (1939)

    Article  ADS  Google Scholar 

  28. D.C. Wallace, Thermodynamics of Crystals (Wiley, New York, 1972)

    Book  Google Scholar 

  29. W. Voigt, L. Taubner, Lehrbush der Kristallphysik, (1928)

  30. A. Reuss, Z. Angew, Math. Phys. 9, 49–58 (1929)

    Google Scholar 

  31. R. Hill, Proc. Phys. Soc. Lond. A 65, 349–354 (1952)

    Article  ADS  Google Scholar 

  32. S.F. Pugh, Philos. Magn. 45, 833 (1954)

    Google Scholar 

  33. J.F. Nye, Propriétés physiques des matériaux (Dunod, Rosario, 1961)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salah Khenchoul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nia, S., Khenchoul, S., Lefkaier, I.K. et al. DFT-based investigation of the structural, magnetic, electronic, half-metallicity and elastic properties in the all-d heusler compounds: the case of \(\hbox {Co}_{\mathrm {2}}\hbox {VZn}\) and CoVZn. Eur. Phys. J. B 94, 118 (2021). https://doi.org/10.1140/epjb/s10051-021-00124-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00124-9

Navigation