Skip to main content
Log in

Nonlinear tunneling of solitons in a variable coefficients nonlinear Schrödinger equation with \(\mathscr {PT}\)-symmetric Rosen–Morse potential

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We construct soliton solution of a variable coefficients nonlinear Schrödinger equation in the presence of parity reflection–time reversal \((\mathscr {PT})-\) symmetric Rosen–Morse potential using similarity transformation technique. We transform the variable coefficients nonlinear Schrödinger equation into the nonlinear Schrödinger equation with \(\mathscr {PT}-\)symmetric potential with certain integrability conditions. We investigate in-detail the features of the obtained soliton solutions with two different forms of dispersion parameters. Further, we analyze the nonlinear tunneling effect of soliton profiles by considering two different forms of nonlinear barrier/well and dispersion barrier/well. Our results show that the soliton can tunnel through nonlinear barrier/well and dispersion barrier/well with enlarged and suppressed amplitudes depending on the sign of the height. Our theoretical findings are experimentally realizable and might help to model the optical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The authors declare that the data supporting the findings of this study are available within the article.]

References

  1. G. Agrawal, Nonlinear Fiber Optics, 4th Edn (Elsevier, Singapore, 2009)

  2. Y.V. Kartashov, V.V. Konotop, V.A Vysloukh and D.A. Zezyulin. Guided modes and symmetry breaking supported by localized gain. In: Malomed B. (eds) Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations, Progress in Optical Science and Photonics, 1, 167, (Springer, Berlin, 2012)

  3. Y.V. Kartashov, G.E. Astrakharchik, B.A. Malomed, L. Torner, Nat. Rev. Phys. 1, 185 (2019)

    Article  Google Scholar 

  4. B.A. Malomed, D. Mihalache, Rom. J. Phys. 64, 106 (2019)

    Google Scholar 

  5. B.A. Malomed, J. Opt. Soc. Am. B 31, 2460 (2014)

    Article  ADS  Google Scholar 

  6. E.A. Ultanir, G.I. Stegeman, D. Michaelis, C.H. Lange, F. Lederer, Phys. Rev. Lett. 90, 253903 (2003)

    Article  ADS  Google Scholar 

  7. A. Hasegawa, F.D. Tappert, Appl. Phys. Lett. 23, 142 (1973)

    Article  ADS  Google Scholar 

  8. A. Hasegawa, F.D. Tappert, Appl. Phys. Lett. 23, 171 (1973)

    Article  ADS  Google Scholar 

  9. L.F. Mollenauer et al., Phys. Rev. Lett. 45, 1095 (1980)

    Article  ADS  Google Scholar 

  10. C.Q. Dai, Y.Y. Wang, Q. Tian, J.F. Zhang, Ann. Phys. 237, 512 (2012)

    Article  ADS  Google Scholar 

  11. K. Manikandan, P. Muruganandam, M. Senthilvelan, M. Lakshmanan, Phys. Rev. E 90, 062905 (2014)

    Article  ADS  Google Scholar 

  12. V.V. Konotop, D.A. Zezyulin, Opt. Lett. 39, 5535 (2014)

    Article  ADS  Google Scholar 

  13. Y. Kominis, Phys. Rev. A 92, 063849 (2015)

    Article  ADS  Google Scholar 

  14. Y. Kominis, Opt. Commun. 334, 265 (2015)

    Article  ADS  Google Scholar 

  15. Y. Kominis, J. Cuevas-Maraver, P.G. Kevrekidis, D.J. Frantzeskakis, A. Bountis, Chaos Solit. Fract. 118, 222 (2019)

    Article  ADS  Google Scholar 

  16. C.M. Bender, S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  17. C.M. Bender, D.C. Brody, H.F. Jones, Phys. Rev. Lett. 89, 270401 (2002)

    Article  MathSciNet  Google Scholar 

  18. C.M. Bender, S. Boettcher, P.N. Meisinger, J. Math. Phys. 40, 2201 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  19. V.N. Serkin, T.L. Belyaeva, JETP Lett. 74, 573 (2001)

    Article  ADS  Google Scholar 

  20. G.Y. Yang, R.Y. Hao, L. Li, Z.H. Li, G.S. Zhou, Opt. Commun. 192, 237 (2001)

    Article  Google Scholar 

  21. W.P. Zhong, M.R. Belic, Phys. Rev. E 81, 056604 (2010)

    Article  ADS  Google Scholar 

  22. C.Q. Dai, Y.Y. Wang, J.F. Zhang, Opt. Express 18, 17548 (2010)

    Article  ADS  Google Scholar 

  23. N.M. Musammil, K. Porsezian, P.A. Subha, K. Nithyanandan, Chaos 27, 023113 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  24. E. Kengne, A. Lakhssassi, W.M. Liu, Nonlinear Dyn. 97, 449 (2019)

    Article  Google Scholar 

  25. Y.V. Kartashov, V.V. Konotop, M. Modugno, E.Y. Sherman, Phys. Rev. Lett. 122, 064101 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  26. J.-W. Yang, Y.-T. Gao, S. Chuan-Qi, D.-W. Zuo, Y.-J. Feng, Commun. Nonlinear Sci. Numer. Simulat. 42, 477 (2017)

    Article  ADS  Google Scholar 

  27. C.Q. Dai, Y.J. Xu, Y. Wang, Commun. Nonlinear Sci. Numer. Simulat. 20, 389 (2015)

    Article  ADS  Google Scholar 

  28. T. Uthayakumar, L. Al, Sakkaf, U. Al Khawaja, Front. Phys. 8, 501 (2020)

  29. A.M. Wazwaz, Rom. Rep. Phys. 72, 110 (2020)

    Google Scholar 

  30. Z.W. Shi, X.J. Jiang, X. Zhu, H.G. Li, Phys. Rev. A 84, 053855 (2011)

    Article  ADS  Google Scholar 

  31. V. Achilleos, P.G. Kevrekidis, D.J. Frantzeskakis, R. Carretero-Gonzales, Phys. Rev. A 86, 013808 (2012)

    Article  ADS  Google Scholar 

  32. F. Lederer, G.I. Stegeman, D.N. Christodoulides, G. Assanto, M. Segev, Y. Silberberg, Phys. Rep. 463, 1–126 (2008)

    Article  ADS  Google Scholar 

  33. S. Klaiman, U. Günther, N. Moiseyev, Phys. Rev. Lett. 101, 080402 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  34. Z.H. Musslimani, K.G. Makris, R. El-Ganainy, D.N. Christodoulides, Phys. Rev. Lett. 100, 030402 (2008)

    Article  ADS  Google Scholar 

  35. M.A. Miri, A.B. Aceves, T. Kottos, V. Kovanis, D.N. Christodoulides, Phys. Rev. A 86, 033801 (2012)

    Article  ADS  Google Scholar 

  36. P. Li, J. Li, B. Han, H. Ma, D. Mihalache, Rom. Rep. Phys. 71, 106 (2019)

    ADS  Google Scholar 

  37. C.Q. Dai, X.G. Wang, G.Q. Zhou, Phys. Rev. A 89, 013834 (2014)

    Article  ADS  Google Scholar 

  38. B. Midya, R. Roychoudhury, Phys. Rev. A 87, 045803 (2013)

    Article  ADS  Google Scholar 

  39. K. Hari, K. Manikandan, R. Sankaranarayanan, Phys. Lett. A 384, 126104 (2020)

    Article  MathSciNet  Google Scholar 

  40. J. Yang, Nonlinear Waves in Integrable and Nonintegrable Systems (Society for Industrial and Applied Mathematics, Philadelphia, PA, 2010)

    Book  Google Scholar 

  41. M.S. Mani Rajan, J. Hakkim, A. Mahalingam, A. Uthayakumar, Eur. Phys. J. D 67, 150 (2013)

  42. Y.Y. Wang, J. He, C.Q. Dai, Opt. Commun. 284, 4738 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

KM wishes to thank the Council of Scientific and Industrial Research, Government of India, for providing the Research Associateship under the Grant No. 03/1397/17/EMR-II. The work of MS forms part of a research project sponsored by National Board for Higher Mathematics, Government of India, under the Grant No. 02011/20/2018NBHM(R.P)/R&D 24II/15064.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Senthilvelan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manikandan, K., Sudharsan, J.B. & Senthilvelan, M. Nonlinear tunneling of solitons in a variable coefficients nonlinear Schrödinger equation with \(\mathscr {PT}\)-symmetric Rosen–Morse potential. Eur. Phys. J. B 94, 122 (2021). https://doi.org/10.1140/epjb/s10051-021-00123-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00123-w

Navigation