Skip to main content
Log in

Chiral magnetic effect and Maxwell–Chern–Simons electrodynamics in Weyl semimetals

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The Weyl semimetal, due to a non-zero energy difference in the pair of Weyl nodes, shows chiral magnetic effect (CME). This leads to a flow of dissipationless electric current along an applied magnetic field. Such a chiral magnetic effect in Weyl semimetals has been studied using the laws of classical electrodynamics. It has been shown that the CME in such a semimetal changes the properties namely, frequency-dependent skin depth, capacitive transport, plasma frequency, etc., in an unconventional way as compared to the conventional metals. In the low-frequency regime, the properties are controlled by a natural length scale due to CME called the chiral magnetic length. Furthermore, unlike the conventional metals, the plasma frequency in this case is shown to be strongly magnetic field-dependent. Since the plasma frequency lies below the optical frequency, the Weyl semimetals will look transparent. Such new and novel observations might help in exploiting these class of materials in potential applications which would completely change the future technology.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This manuscript is a theoretical one and it contains no experimental data.]

References

  1. C.L. Kane, E.J. Mele, \(Z_2\) Topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005)

    Article  ADS  Google Scholar 

  2. C.L. Kane, E.J. Mele, Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005)

    Article  ADS  Google Scholar 

  3. B.A. Bernevig, T.L. Hughes, S.-C. Zhang, Quantum spin Hall effect and topological phase transition in \(HgTe\) quantum wells. Science 314, 1757 (2006)

    Article  ADS  Google Scholar 

  4. J.E. Moore, L. Balents, Topological invariants of time-reversal invariant band structures. Phys. Rev. B 75, 121306 (2007)

    Article  ADS  Google Scholar 

  5. M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.W. Molenkamp, X.-L. Qi, S.-C. Zhang, Quantum spin Hall insulator state in \(HgTe\) quantum wells. Science 318, 766 (2007)

    Article  ADS  Google Scholar 

  6. Y. Xia et al., Observation of a large gap topological insulator class with a single Dirac cone on the surface. Nat. Phys. 5, 398 (2009)

    Article  Google Scholar 

  7. M.Z. Hasan, C.L. Kane, Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  8. Xiao-Liang Qi, Shou -Cheng Zhang, Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011)

    Article  ADS  Google Scholar 

  9. X. Wan, A.M. Turner, A. Vishwanath, S.Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011)

    Article  ADS  Google Scholar 

  10. N.P. Armitage, E.J. Mele, Ashvin Viswanath, Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  11. Kai-Yu. Yang, Lu Yuan-Ming, Ying Ran, Quantum Hall effect in Weyl semimetal: possible application in pyrochlore iridates. Phys. Rev. B 84, 075129 (2011)

    Article  ADS  Google Scholar 

  12. A.A. Burkov, L. Balents, Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011)

    Article  ADS  Google Scholar 

  13. G. Xu, H. Weng, Z. Wang, X. Dai, Z. Fang, Chern semimetal and the quantized anomalous Hall effect in \(HgCr_2Se_4\). Phys. Rev. Lett. 107, 186806 (2011)

    Article  ADS  Google Scholar 

  14. A.A. Zyuzin, S. Wu, A.A. Burkov, Weyl semimetal with broken time reversal and inversion symmetries. Phys. Rev. B 85, 165110 (2012)

    Article  ADS  Google Scholar 

  15. A.A. Zyuzin, A.A. Burkov, Topological response in Weyl semimetals and the chiral anomaly. Phys. Rev. B 86, 115133 (2012)

    Article  ADS  Google Scholar 

  16. T. Meng, L. Balents, Weyl superconductors. Phys. Rev. B 86, 054504 (2012)

    Article  ADS  Google Scholar 

  17. M. Gong, S. Tewari, C.W. Zhang, BCS-BEC cross-over and topological phase transition in 3D spin-orbit coupled degenerate Fermi gas. Phys. Rev. Lett. 107, 195303 (2011)

    Article  ADS  Google Scholar 

  18. J.D. Sau, S. Tewari, Topologically protected surface Majorana arcs and bulk Weyl Fermions in ferromagnetic superconductors. Phys. Rev. B 86, 104509 (2012)

    Article  ADS  Google Scholar 

  19. S.-Y. Xu et al., Discovery of a Weyl Fermion semimetal and topological Fermi arcs. Science 349, 613 (2015)

    Article  ADS  Google Scholar 

  20. B.Q. Lv et al., Observation of Weyl nodes in \(TaAs\). Nat. Phys. 11, 724 (2015)

    Article  Google Scholar 

  21. B.Q. Lv et al., Experimental discovery of Weyl semimetal \(TaAs\). Phys. Rev. X 5, 031013 (2015)

    Google Scholar 

  22. C. Shekhar et al., Extremely large magnetoresistence and ultra high mobility in the topological Weyl semimetal candidate \(NbP\). Nat. Phys. 11, 645 (2015)

    Article  Google Scholar 

  23. L.X. Yang et al., Weyl semimetal phase in the non-centrosymmetric compound \(TaAs\). Nat. Phys. 11, 728 (2015)

    Article  Google Scholar 

  24. S.-Y. Xu et al., Discovery of a Weyl Fermion state with Fermi arcs in niobium arsenide. Nat. Phys. 11, 748 (2015)

    Article  Google Scholar 

  25. H.B. Nielsen, M. Ninomiya, The Adler-Bell-Jackiw anomaly and Weyl Fermions in a crystal. Phys. Lett. B 130, 389 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  26. Di Xiao, Yugui Yao, Zhong Fang, Qian Niu, Berry phase effect in anomalous thermoelectric transport. Phys. Rev. Lett. 97, 026603 (2006)

    Article  ADS  Google Scholar 

  27. P. Hosur, X.L. Qi, Recent developments in transport phenomena in Weyl semimetals. Comptes Rendus Physique 14, 857 (2013)

    Article  ADS  Google Scholar 

  28. A.A. Burkov, Chiral anomaly and transport in Weyl metals. J. Phys. Condens. Matter 27, 113201 (2015)

    Article  ADS  Google Scholar 

  29. S. Adler, Axial-vector vertex in spinor electrodynamics. Phys. Rev. 177, 2426 (1969)

    Article  ADS  Google Scholar 

  30. J.S. Bell, R. Jackiw, A PCAC puzzle: \(\pi ^0\rightarrow \gamma \gamma \) in the \(\sigma \)- model. Nuovo Cimento A 60, 47 (1969)

    Article  ADS  Google Scholar 

  31. D.T. Son, B.Z. Spivak, Chiral anomaly and classical negative magnetoresistence of Weyl metals. Phys. Rev. B 88, 104412 (2013)

    Article  ADS  Google Scholar 

  32. Xiaochun Huang et al., Observation of the chiral anomaly induced negative magnetoreistence in 3D Weyl semimetal \(TaAs\). Phys. Rev. X 5, 031023 (2015)

    Google Scholar 

  33. C. Zhang et al., Signature of the Adler-Bell-Jackie chiral anomaly in a Weyl fermion semimetal. Nat. Commun. 7, 10735 (2015)

    Article  ADS  Google Scholar 

  34. P. Goswami, S. Tewari, Axionic field theory of (3+1) dimensional Weyl semimetals. Phys. Rev. B 88, 245107 (2013)

    Article  ADS  Google Scholar 

  35. M.A. Stephanov, Y. Yin, Chiral kinetic theory. Phys. Rev. Lett. 109, 162001 (2012)

    Article  ADS  Google Scholar 

  36. K. Fukushima, D.E. Kharzeev, H.J. Warringa, Chiral magnetic effect. Phys. Rev. D 78, 074033 (2008)

    Article  ADS  Google Scholar 

  37. M.M. Vazifeh, M. Franz, Electromagnetic response of Weyl semimetals. Phys. Rev. Lett. 111, 027201 (2013)

    Article  ADS  Google Scholar 

  38. Y. Chen, Si Wu, A.A. Burkov, Axion response in Weyl semimetals. Phys. Rev. B 88, 125105 (2013)

    Article  ADS  Google Scholar 

  39. Ming-Che Chang, Min-Fong Yang, Chiral magnetic effect in a two-band lattice model of Weyl semimetal. Phys. Rev. B 91, 115203 (2015)

    Article  ADS  Google Scholar 

  40. D.J. Griffiths, Introduction to Electrodynamics (PHI Learning Private Limited, New Delhi, 2011)

    Google Scholar 

  41. Due to the axion action mentioned in the introduction, the Gauss’s law and the Ampere’s law can respectively be written as, \({\vec{\nabla }}.{\vec{E}}=4\pi (\rho +\frac{\alpha }{2\pi ^2}{\vec{Q}}.{\vec{B}}) \) and \({\vec{\nabla }}\times {\vec{B}}=\frac{4\pi }{c} [{\vec{J}} +\frac{\alpha }{2\pi ^2}Q_0{\vec{B}}+\frac{\alpha }{2\pi ^2} ({\vec{Q}}\times {\vec{E}})]+\frac{1}{c}\frac{\partial {\vec{E}}}{\partial t}\). Since we are interested here in CME, the terms containing \({\vec{Q}}\) have been neglected and the term related to \(Q_0\) has been absorbed in \(\sigma _{ch}\) as, \(\frac{\alpha }{2\pi ^2}Q_0=\sigma _{ch}\)

  42. The skin depth in a Weyl semimetal might develop an extra frequency dependence through the parameter \(\sigma _{ch}\) in addition to the frequency dependence mentioned in the text which is beyond the scope of the present manuscript

  43. P.E.C. Ashby, J.P. Carbotte, Chiral anomaly and optical absorption in Weyl semimetals. Phys. Rev. B 89, 245121 (2014)

    Article  ADS  Google Scholar 

  44. Z. Long et al., Magnetopolariton in Weyl semimetals in a strong magnetic field. Phys. Rev. Lett. 120, 037403 (2018)

  45. P. Goswami, S. Tewari, Chiral magnetic effect of Weyl Fermions and its application to cubic non-centrosymmetric metals. arXiv:1311.1506 [cond-mat.mes-hall] (2013)

  46. S.-Y. Xu et al., Experimental discovery of a topological Weyl semimetal state in TaP. Sci. Adv. 01, 1501092 (2015)

    Article  ADS  Google Scholar 

  47. H. Fujita, M. Oshikawa, Universal transport and resonant current from chiral magnetic effect. arXiv:1602.00687v1 [cond-mat.str-e1] (2016)

  48. C.J. Tabert, J.P. Carbotte, E.J. Nicol, Optical and transport properties in 3D Dirac and Weyl semimetals. Phys. Rev. B 93, 085426 (2016). (94, 039901 (2016))

    Article  ADS  Google Scholar 

  49. S.Das Sarma, E.H. Hwang, Collective modes of massless Dirac plasma. Phys. Rev. Lett. 102, 206412 (2009)

  50. M. Lv, S.C. Zhang, Dielectric function, Friedel oscillation and plasmons in Weyl semimetals. Int. J. Mod. Phys. B 27, 1350177 (2013)

    Article  ADS  Google Scholar 

  51. J. Zhou, Hao-Ran Chang, Di Xiao, Plasmon mode as a detection of chiral anomaly in Weyl semimetals. Phys. Rev. B 91, 035114 (2015)

    Article  ADS  Google Scholar 

  52. Ming-Che Chang, Min-Fong Yang, Chiral magnetic effect in the absence of Weyl node. Phys. Rev. B 92, 205201 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof. T. V. Ramakrishnan and Prof. V. S. Subrahmanyam for stimulating discussions and critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debanand Sa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sa, D. Chiral magnetic effect and Maxwell–Chern–Simons electrodynamics in Weyl semimetals. Eur. Phys. J. B 94, 31 (2021). https://doi.org/10.1140/epjb/s10051-020-00042-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-020-00042-2

Navigation