Skip to main content
Log in

Negative differential resistance and rectification effect of the benzoquinone molecules junction sandwiched between the graphene nanoribbon electrodes

  • Regular Article - Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Based on the first-principles calculation method combining the density functional theory (DFT) and the nonequilibrium Green’s function (NEGF) method, the negative differential resistance (NDR) and rectification effect of the benzoquinone molecules junction sandwiched between the graphene nanoribbon electrodes are systematically investigated. The current of the device with the central o-benzoquinone and p-benzoquinone molecule has been demonstrated to decrease with the increase of the bias voltage in the range of [± 0.9 V, ± 1.5 V] and [± 0.6 V, ± 1.1 V], respectively, exhibiting a significant NDR effect. In addition, the interesting NDR effect of the device with the central carbon (C) and nitrogen (N) connected o- and p-benzoquinone molecules has been observed in the bias voltage range of [0.9 V, 1.2 V] and [\(-0.8\) V, \(-1.0\) V] , respectively. The current of the device with the central sulfur (S) and oxygen (O) connected o- and p-benzoquinone molecules should decrease with the increase of the bias voltage at the regime of [0.8 V, 1.0 V] while that should be forbidden when a negative bias voltage is applied, illustrating an interesting rectification effect, and the maximum rectification ratio is observed to be up to 57.85 and 55.85, respectively. The obtained NDR and rectification effect are physically explained from the integral of the transmission coefficient in the bias voltage window and the distribution of the real space charge density, and the demonstrated results are believed to be vital for the designing of the molecular switches, molecular rectifying devices and negative differential resistance devices based on benzoquinone molecules junction.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.K. Gimzewski, E.P. Stoll, R.R. Schlittler, Surf. Sci. 181, 267 (1987)

    Article  ADS  Google Scholar 

  2. B.Q. Xu, N.J. Tao, Science 301, 1221 (2003)

    Article  ADS  Google Scholar 

  3. C.J. Muller, J.V. Ruitenbeek, L.D. Jongh, Phys. C 191, 485 (1992)

    Article  ADS  Google Scholar 

  4. C.J. Muller, B.J. Vleerming, M.A. Reed, J.J.S. Lamba, R. Hara, L. Jones, J.M. Tour, Nanotechnology 7, 409 (1996)

    Article  ADS  Google Scholar 

  5. M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, J.M. Tour, Science 278, 252 (1997)

    Article  Google Scholar 

  6. N.J. Tao, Nat. Nanotechnol. 1, 173 (2006)

    Article  ADS  Google Scholar 

  7. M.J. Comstock, L. Niv, K. Armen, C. Jongweon, L. Frank, J.H. Harvey, D.A. Strubbe, J.M.J. Fréchet, T. Dirk, S.G. Louie, Phys. Rev. Lett. 99, 038301 (2007)

    Article  ADS  Google Scholar 

  8. C.L. Liu, T. Kurosawa, A.D. Yu, T. Higashihara, M. Ueda, W.C. Chen, J. Phys. Chem. C 115, 5930 (2011)

    Article  Google Scholar 

  9. T.B. Martins, A. Fazzio, A.J.R. da Silva, Phys. Rev. B 79, 115413 (2009)

    Article  ADS  Google Scholar 

  10. M.P. Samanta, W. Tian, S. Datta, J.I. Henderson, C.P. Kubiak, Phys. Rev. B (R) 53, 7626 (1996)

    Article  ADS  Google Scholar 

  11. M.G. Vergniory, J.M. Roldán-Granadino, A. Garcia-Lekue, L.W. Wang, Appl. Phys. Lett. 97, 262114 (2010)

    Article  ADS  Google Scholar 

  12. H.Q. Wan, B.H. Zhou, X.W. Chen, C.Q. Sun, G.H. Zhou, J. Phys. Chem. C 116, 2570 (2012)

    Article  Google Scholar 

  13. J. Zheng, X. Yan, L. Yu, H. Li, R. Qin, G. Luo, Z. Gao, D. Yu, J. Lu, J. Phys. Chem. C 115, 8547 (2011)

    Article  Google Scholar 

  14. Z.Q. Fan, F. Xie, X.W. Jiang, Z. Wei, S.S. Li, Carbon 110, 200 (2016)

    Article  Google Scholar 

  15. Z.Q. Fan, W.Y. Sun, X.W. Jiang, Z.H. Zhang, X.Q. Deng, G.P. Tang, H.Q. Xie, M.Q. Long, Carbon 113, 18 (2017)

    Article  Google Scholar 

  16. R. Smit, Y. Noat, C. Untiedt, N. Lang, M.V. van Hemert, J. Van Ruitenbeek, Nature 419, 906 (2002)

    Article  ADS  Google Scholar 

  17. M. Elbing, R. Ochs, M. Koentopp, M. Fischer, C. von Hänisch, F. Weigend, F. Evers, H.B. Weber, M.P. Mayor, Natl. Acad. Sci. USA 102, 8815 (2005)

    Article  ADS  Google Scholar 

  18. A.L. Briseno, S.C. Mannsfeld, C. Reese, J.M. Hancock, Y. Xiong, S.A. Jenekhe, Z. Bao, Y. Xia, Nano Lett. 7, 2847 (2007)

    Article  ADS  Google Scholar 

  19. H.M. Wen, Y. Yang, X.S. Zhou, J.Y. Liu, D.B. Zhang, Z.B. Chen, J.Y. Wang, Z.N. Chen, Z.Q. Tian, Chem. Sci. 4, 2471 (2013)

    Article  Google Scholar 

  20. C. Jia, A. Migliore, N. Xin, S. Huang, J. Wang, Q. Yang, S. Wang, H. Chen, D. Wang, B. Feng, Science 352, 1443 (2016)

    Article  ADS  Google Scholar 

  21. R.F. Service, Science 294, 2442 (2001)

    Article  Google Scholar 

  22. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  23. C.A. Di, D. Wei, G. Yu, Y. Liu, Y. Guo, D. Zhu, Adv. Mater. 20, 3289 (2008)

    Article  Google Scholar 

  24. J.S. Wu, W. Pisula, K. Mullen, Chem. Rev. 107, 718 (2007)

    Article  Google Scholar 

  25. F. Schedin, A.K. Geim, S. Morozov, E. Hill, P. Blake, M. Katsnelson, K.S. Novoselov, Nat. Mater. 6, 652 (2007)

    Article  ADS  Google Scholar 

  26. A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  27. J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63, 245407 (2001a)

    Article  ADS  Google Scholar 

  28. J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63, 121104 (2001b)

    Article  ADS  Google Scholar 

  29. D. Waldron, P. Haney, B. Larade, A. MacDonald, H. Guo, Phys. Rev. Lett. 96, 166804 (2006)

    Article  ADS  Google Scholar 

  30. D. Waldron, V. Timoshevskii, Y. Hu, K. Xia, H. Guo, Phys. Rev. Lett. 97, 226802 (2006)

    Article  ADS  Google Scholar 

  31. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  32. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  33. B. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang, J.R. Gong, Nano Lett. 10, 4975 (2010)

    Article  ADS  Google Scholar 

  34. X.B. Li, Y. Li, X.J. Zhang, M.Q. Long, G.H. Zhou, Nanoscale Res. Lett. 14, 299 (2019)

    Article  ADS  Google Scholar 

  35. A. Copple, N. Ralston, X.H. Peng, Appl. Phys. Lett. 100, 193108 (2012)

    Article  ADS  Google Scholar 

  36. R.O. Jones, O. Gunnarsson, Rev. Mod. Phys. 61, 689 (d1989)

    Article  ADS  Google Scholar 

  37. D.D. Peng, X.J. Zhang, X.B. Li, D. Wu, M.Q. Long, J. Appl. Phys. 124, 184303 (2018)

    Article  ADS  Google Scholar 

  38. L.M. Cao, X.B. Li, M. Zuo, C.X. Jia, W.H. Liao, M.Q. Long, G.H. Zhou, J. Magn. Magn. Mater. 485, 136–141 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Profs. Heping Zhao, Guanghui Zhou and Xi Yang for insightful discussions. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11664010 and 11264013), the Hunan Provincial Natural Science Foundation of China (Grant Nos. 2017JJ2217 and 12JJ4003), the Scientific Research Fund of Hunan Provincial Education Department of China (Grant Nos. 18A293 and 14B148), the Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, and the Research Program of Jishou University (Grant Nos. JGY201851, Jdy1849 and Jdy19039).

Author information

Authors and Affiliations

Authors

Contributions

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

Corresponding author

Correspondence to Wenhu Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, M., Liao, W., Wu, D. et al. Negative differential resistance and rectification effect of the benzoquinone molecules junction sandwiched between the graphene nanoribbon electrodes. Eur. Phys. J. B 94, 26 (2021). https://doi.org/10.1140/epjb/s10051-020-00023-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-020-00023-5

Navigation