Skip to main content
Log in

General method to sample systems in the microcanonical ensemble using Monte Carlo simulations

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Monte Carlo simulations have boosted the numerical study of several different physical systems and in particular, the canonical ensemble has been especially useful because of the existence of easy and efficient simulation algorithms. Nevertheless, nature does not know about statistical ensembles and therefore it is desirable and a theoretical challenge to show how to perform numerical simulations in the microcanonical ensemble without the use of unphysical degrees of freedom. In this article, we present a straightforward applicable method based on the concepts of a configurational temperature estimator (Rugh Phys Rev Lett 78:772, 1997; Gutiérrez et al. J Phys A Math Theor 51:455003, 2018) and on stochastic dynamics, which is independent of the Monte Carlo update strategy, and can be implemented for both local update or cluster algorithms. We illustrate it by performing a numerical simulation of the two-dimensional XY-model, finding the equilibrium temperature of two spin subsystems initially at different temperatures when they are put into thermal contact.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data used to produce the different figures can be requested to the corresponding author if required.]

References

  1. H.H. Rugh, Dynamical approach to temperature. Phys. Rev. Lett. 78, 772 (1997)

    Article  ADS  Google Scholar 

  2. G. Gutiérrez, S. Davis, G. Palma, Configurational temperature in constraint systems: the case of spin dynamics. J. Phys. A: Math. Theor. 51, 455003 (2018)

    Article  ADS  Google Scholar 

  3. R.H. Swendsen, J.-S. Wang, Nonuniversal critical dynamics in Monte Carlo simulations. Phys. Rev. Lett. 58, 86 (1987)

    Article  ADS  Google Scholar 

  4. U. Wolff, Collective Monte Carlo updating for spin systems. Phys. Rev. Lett. 62, 361 (1989)

    Article  ADS  Google Scholar 

  5. R.H. Swendsen, Monte Carlo renormalization group. Phys. Rev. Lett. 42, 859 (1979)

    Article  ADS  Google Scholar 

  6. G. Palma, D. Zambrano, Cluster-algorithm renormalization-group study of universal fluctuations in the two-dimensional Ising model. Phys. Rev. E 78, 061134 (2008)

    Article  ADS  Google Scholar 

  7. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  8. D. Ruelle, Statistical mechanics: rigorous results (Benjamin, Reading, 1969)

    MATH  Google Scholar 

  9. D. H. E. Gross, Microcanonical Thermodynamics: Phase Transitions in “small” Systems. World Scientific Publishing Co. Pte. Ltd., (2001)

  10. M. Creutz, Microcanonical Monte Carlo simulation. Phys. Rev. Lett. 50(19), 1411 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  11. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995)

    Article  ADS  Google Scholar 

  12. S. Ota, S.B. Ota, M. Fahnle, Microcanonical Monte Carlo simulations for the twodimensional xy model. J. Phys.: Cond. Matt. 4, 5411 (1992)

    ADS  Google Scholar 

  13. J.R. Ray, Microcanonical ensemble Monte Carlo method. Phys. Rev. A 44(6), 4061 (1991)

    Article  ADS  Google Scholar 

  14. J.R. Ray, C. Frelechoz, Microcanonical ensemble Monte Carlo method for discrete systems. Phys. Rev. E 53(4), 3402 (1996)

    Article  ADS  Google Scholar 

  15. A. Huller, M. Pleimling, Microcanonical determination of the order parameter critical exponent. Int. J. Mod. Phys. C 13, 947 (2002)

    Article  ADS  Google Scholar 

  16. A. Richter, M. Pleimling, A. Huller, Density of states of classical spin systems with continuous degrees of freedom. Phys. Rev. E 71, 056705 (2005)

    Article  ADS  Google Scholar 

  17. C.S. Shida, V.B. Henriquez, M.J. de Oliveira, Microcanonical Monte Carlo simulation of lattice gas models. Phys. Rev. E 68, 066125 (2003)

    Article  ADS  Google Scholar 

  18. K. Kawasaki, Phase transitions and critical phenomena. C. Domb and M. S. Green (Academic Press, London, Vol. 2), (1972)

  19. C.E. Fiore, V.B. Henriquez, M.J. de Oliveira, Canonical and microcanonical Monte Carlo simulations of lattice-gas mixtures. J. Chem. Phys. 125, 164509 (2006)

    Article  ADS  Google Scholar 

  20. C.E. Fiore, M.J. de Oliveira, Extending the use of canonical and microcanonical Monte Carlo algorithms to spin models. Comput. Phys. Commun. 180, 1434 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  21. W. Greiner, L. Neise, H. Stocker, Thermodynamics and statistical mechanics. Springer-Verlag New York, Inc. (english translation 1995), (1987)

  22. L. E. Reichl, A Modem Course in Statistical Physics, 2nd ed. Wiley, New York, (1998)

  23. M. Kardar, Statistical physics of particles (Cambridge University Press, Cambridge, 2007)

    Book  Google Scholar 

  24. K.S. Thorne, R.D. Blandford, Modern classical physics: optics, fluids, plasmas (relativity, and statistical physics, elasticity (Princeton University Press, Princeton, 2017)

    MATH  Google Scholar 

  25. J. J. Binney, N. J. Dowrick, A. J. Fisher, M. E. J. Newman, The theory of critical phenomena: an introduction to the renormalization group. Oxford University Press, Inc, (1992)

  26. H.G. Evertz, G. Lana, M. Marcu, Cluster algorithm for vertex models. Phys. Rev. Lett. 70, 875 (1993)

    Article  ADS  Google Scholar 

  27. B.B. Beard, U.-J. Wiese, Cluster algorithm for vertex models. Phys. Rev. Lett. 77, 5130 (1996)

    Article  ADS  Google Scholar 

  28. G. Palma, A. Riveros, Meron-cluster simulation of the quantum antiferromagnetic Heisenberg model in a magnetic field in one- and two-dimensions. Cond. Matt. Phys. 18, 23002 (2015)

    Article  Google Scholar 

  29. A.M. Ferrenberg, R.H. Swendsen, New Monte Carlo technique for studying phase transitions. Phys. Rev. Lett. 61, 2635 (1988)

    Article  ADS  Google Scholar 

  30. A.M. Ferrenberg, R.H. Swendsen, Optimized Monte Carlo data analysis. Phys. Rev. Lett. 63, 1195 (1989)

    Article  ADS  Google Scholar 

  31. G. Palma, G. Gutiérrez, S. Davis, Ensemble-free configurational temperature for spin systems. Phys. Rev. E 94, 062113 (2016)

    Article  ADS  Google Scholar 

  32. W.B. Nurdin, K.-D. Schotte, Dynamical temperature for spin systems. Phys. Rev. E 61, 3579 (2000)

    Article  ADS  Google Scholar 

  33. A. Cruz, L.A. Fernandez, D. Iniguez, A. Tarancon, A multisite microcanonical updating method. Phys. Lett. B 374, 152 (1996)

    Article  ADS  Google Scholar 

  34. C. Best, A. Schaefer, “Variational description of statistical field theories using daubechies wavelets,” arXiv:hep-lat/9402012, (1994)

  35. X. Leoncini, A.D. Verga, S. Ruffo, Hamiltonian dynamics and the phase transition of the xy model. Phys. Rev. E 57, 6377 (1998)

    Article  ADS  Google Scholar 

  36. M. Creutz, Overrelaxation and Monte Carlo simulation. Phys. Rev. D 36(2), 515 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  37. F.R. Brown, T.J. Woch, Overrelaxed heat-bath and metropolis algorithms for accelerating pure gauge Monte Carlo calculations. Phys. Rev. Lett. 58(23), 2394 (1987)

    Article  ADS  Google Scholar 

  38. U. Wolff, Critical slowing down. Nucl. Phys. B. Proc. Suppl. 17, 93 (1990)

    Article  ADS  Google Scholar 

  39. G. Palma, F. Niedermayer, Z. Racz, A. Riveros, D. Zambrano, Finite-size corrections to scaling of the magnetization distribution in the two-dimensional xy model at zero temperature. Phys. Rev. E 94, 022145 (2016)

    Article  ADS  Google Scholar 

  40. C. Neill et al., Ergodic dynamics and thermalization in an isolated quantum system. Nat. Phys. 12, 1037 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Dicyt-USACH Grant No. 041831PA. A.R. acknowledges support from CONICYT + PAI / Convocatoria Nacional Subvención a la instalación en la Academia, convocatoria 2019 + Folio 77190042.

Author information

Authors and Affiliations

Authors

Contributions

The idea for this study was proposed by GP, the elaboration of the method was carried out by both authors. The numerical results were obtained by AR. Both authors contributed to the data analysis, the discussions and the writing of the manuscript.

Corresponding author

Correspondence to A. Riveros.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palma, G., Riveros, A. General method to sample systems in the microcanonical ensemble using Monte Carlo simulations . Eur. Phys. J. B 94, 23 (2021). https://doi.org/10.1140/epjb/s10051-020-00022-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-020-00022-6

Navigation