Skip to main content
Log in

Effect of the polar distortion on the thermoelectric properties of GeTe

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

First principle calculations are performed to investigate the effect of polar order strength on the thermoelectric properties of GeTe compound in its rhombohedral structure. Different magnitudes of polarization exhibit a noticeable effect on the thermoelectric properties of GeTe. In particular, polar structures with higher polarization tend to show higher thermoelectric efficiencies. Thus, it is shown that polarization engineering is an important factor in designing efficient thermoelectric devices. In particular, we proposed that high thermoelectric performances could be achieved by growing epitaxial GeTe films that are bi-axially compressed in the directions perpendicular to the polar axis in order to achieve larger polarization states.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There are no external data associated with the manuscript.].

References

  1. A.D. Sherbinin, D. Carr, S. Cassels, L. Jiang, Annu. Rev. Environ. Resour. 32, 345 (2007). https://doi.org/10.1103/PhysRevB.35.7986

    Article  Google Scholar 

  2. F.J. DiSalvo, Science 285, 703 (1999). https://doi.org/10.1126/science.285.5428.703

    Article  Google Scholar 

  3. E.J. Winder, A.B. Ellis, G.C. Lisensky, J. Chem. Educ. 73, 940 (1996)

    Article  Google Scholar 

  4. J. Electron. Control 8, 463 (1960). https://doi.org/10.1080/00207216008937294

  5. L.E. Bell, Science 321, 1457 (2008). https://doi.org/10.1126/science.1158899

    Article  ADS  Google Scholar 

  6. M.W. Gaultois, A.O. Oliynyk, A. Mar, T.D. Sparks, G.J. Mulholland, B. Meredig, Appl. Mater. 4(11), 053213 (2016). https://doi.org/10.1063/1.4952607

    Article  ADS  Google Scholar 

  7. B. Hamad, J. Mater. Sci. 51(24), 10887 (2016). https://doi.org/10.1007/s10853-016-0300-2

    Article  ADS  Google Scholar 

  8. B. Hamad, J. Electron. Mater. 46, 6595 (2017). https://doi.org/10.1007/s11664-017-5721

    Article  ADS  Google Scholar 

  9. S. Twaha, J. Zhu, Y. Yan, B. Li, Renew. Sustain. Energy Rev. 65, 698 (2016). https://doi.org/10.1016/j.rser.2016.07.034

    Article  Google Scholar 

  10. J. Lai, A. Majumdar, J. Appl. Phys. 79, 7353 (1996). https://doi.org/10.1063/1.361424

    Article  ADS  Google Scholar 

  11. Y.Z. Pei, X.Y. Shi, A. LaLonde, H. Wang, L.D. Chen, G.J. Snyder, Nature 473, 66 (2011). https://doi.org/10.1038/nature09996

    Article  ADS  Google Scholar 

  12. G.J. Tan et al., J. Am. Chem. Soc. 136, 7006 (2014). https://doi.org/10.1590/1516-1439.272214

    Article  Google Scholar 

  13. A. Polozine, S. Sirotinskaya, L. Schaeffer, Mater. Res.-Ibero-Am. J. Mater. 17, 1260 (2014). https://doi.org/10.1021/ja500860m

    Article  Google Scholar 

  14. A. Bali, E. Royanian, E. Bauer, P. Rogl, R.C. Mallik, J. Appl. Phys. 113, 123707 (2013). https://doi.org/10.1063/1.4796148

    Article  ADS  Google Scholar 

  15. Z.H. Dughaish, Phys. B Condens. Matter 322, 205 (2002). https://doi.org/10.1016/S0921-4526(02)01187-0

    Article  ADS  Google Scholar 

  16. R. He et al., J. Materiom. 5, 15 (2019). https://doi.org/10.1016/j.jmat.2018.11.004

    Article  Google Scholar 

  17. M.C. Steele, F.D. Rosi, J. Appl. Phys. 29, 1517 (1958). https://doi.org/10.1063/1.1722984

    Article  ADS  Google Scholar 

  18. L.D. Zhao, S.H. Lo, Y.S. Zhang, H. Sun, G.J. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Nature 508, 373 (2014). https://doi.org/10.1038/nature13184

    Article  ADS  Google Scholar 

  19. S. Perumal, S. Roychowdhury, K. Biswas, Inorg. Chem. Front. 3, 125 (2016). https://doi.org/10.1039/C5QI00230C

    Article  Google Scholar 

  20. L.H. Wu, X. Li, S.Y. Wang, T.S. Zhang, J. Yang, W.Q. Zhang, L.D. Chen, J.H. Yang, Npg Asia Mater. 9(7), e343 (2017). https://doi.org/10.1038/am.2016.203

    Article  Google Scholar 

  21. Z. Liu et al., Proc. Natl. Acad. Sci. 115, 5332 (2018). https://doi.org/10.1073/pnas.1802020115

    Article  ADS  Google Scholar 

  22. J. Li, Z. Chen, X. Zhang, Y. Sun, J. Yang, Y. Pei, NPG Asia Mater. 9, e353 (2017). https://doi.org/10.1038/am.2017.8

    Article  ADS  Google Scholar 

  23. H.L. Kagdada, P.K. Jha, P. Śpiewak, K.J. Kurzydłowski, Phys. Rev. B 97, 134105 (2018). https://doi.org/10.1103/PhysRevB.97.134105

    Article  ADS  Google Scholar 

  24. G. Xing, J. Sun, Y. Li, X. Fan, W. Zheng, D.J. Singh, J. Appl. Phys. 123, 195105 (2018). https://doi.org/10.1063/1.5025070

    Article  ADS  Google Scholar 

  25. P.-C. Wei et al., Sci. Rep. 9, 8616 (2019). https://doi.org/10.1038/s41598-019-45071-9

    Article  ADS  Google Scholar 

  26. T. Xing et al., Natl. Sci. Rev. 6, 944 (2019). https://doi.org/10.1093/nsr/nwz052

    Article  Google Scholar 

  27. B. Srinivasan, A. Gelle, J.F. Halet, C. Boussard-Pledel, B. Bureau, Materials 11(9), 2237 (2018). https://doi.org/10.3390/ma11112237

    Article  ADS  Google Scholar 

  28. L. Xu, H.-Q. Wang, J.-C. Zheng, J. Electron. Mater. 40, 641 (2011). https://doi.org/10.1007/s11664-010-1491-y

    Article  ADS  Google Scholar 

  29. B. Srinivasan, R. Gautier, F. Gucci, B. Fontaine, J.-F. Halet, F. Cheviré, C. Boussard-Pledel, M.J. Reece, B. Bureau, J. Phys. Chem. C 122, 227 (2018). https://doi.org/10.1021/acs.jpcc.7b10839

    Article  Google Scholar 

  30. J. Dong, F.-H. Sun, H. Tang, J. Pei, H.-L. Zhuang, H.-H. Hu, B.-P. Zhang, Y. Pan, J.-F. Li, Energy Environ. Sci. 12, 1396 (2019). https://doi.org/10.1039/C9EE00317G

    Article  Google Scholar 

  31. Y. Jin, Y. Xiao, D. Wang, Z. Huang, Y. Qiu, L.-D. Zhao, ACS Appl. Energy Mater. 2, 7594 (2019). https://doi.org/10.1021/acsaem.9b01585

    Article  Google Scholar 

  32. X.Y. Zhang, J. Li, X. Wang, Z.W. Chen, J.J. Mao, Y. Chen, Y.Z. Pei, J. Am. Chem. Soc. 140, 15883 (2018). https://doi.org/10.1021/jacs.8b09375

    Article  Google Scholar 

  33. Đ. Dangić, A. R. Murphy, É. D. Murray, S. Fahy, I. Savić, Physical Review B 97, 224106 (2018). https://doi.org/10.1103/PhysRevB.97.224106

  34. N.K. Abrikosov, V.F. Bankina, L.V. Poretskaya, L.E. Shelimova, E.V. Skudnova, in Semiconducting II-VI, IV-VI, and V-VI Compounds, ed. by N.K. Abrikosov, et al. (Springer, US, Boston, MA, 1969), p. 65

  35. G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175, 67 (2006). https://doi.org/10.1016/j.cpc.2006.03.007

    Article  ADS  Google Scholar 

  36. X. Gao, K. Uehara, D.D. Klug, S. Patchkovskii, J.S. Tse, T.M. Tritt, Phys. Rev. B 72, 125202 (2005). https://doi.org/10.1103/PhysRevB.72.125202

    Article  ADS  Google Scholar 

  37. A. Togo, I. Tanaka, Scripta Mater. 108, 1 (2015). https://doi.org/10.1016/j.scriptamat.2015.07.021

    Article  ADS  Google Scholar 

  38. W. Li, J. Carrete, N.A. Katcho, N. Mingo, Comput. Phys. Commun. 185, 1747 (2014). https://doi.org/10.1016/j.cpc.2014.02.015

    Article  ADS  Google Scholar 

  39. K. Jeong, S. Park, D. Park, M. Ahn, J. Han, W. Yang, H.-S. Jeong, M.-H. Cho, Sci. Rep. 7, 955 (2017). https://doi.org/10.1038/s41598-017-01154-z

    Article  ADS  Google Scholar 

  40. H.W. Shu, S. Jaulmes, R. Ollitrault-Fichet, J. Flahaut, J. Solid State Chem. 69, 48 (1987). https://doi.org/10.1016/0022-4596(87)90009-0

    Article  ADS  Google Scholar 

  41. S.-J. Gong, F. Zheng, A.M. Rappe, Phys. Rev. Lett. 121, 017402 (2018). https://doi.org/10.1103/PhysRevLett.121.017402

    Article  ADS  Google Scholar 

  42. K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, M. Wuttig, Nat. Mater. 7, 653 (2008). https://doi.org/10.1038/nmat2226

    Article  ADS  Google Scholar 

  43. J.-H. Bahk, A. Shakouri, Appl. Phys. Lett. 105, 052106 (2014). https://doi.org/10.1063/1.4892653

    Article  ADS  Google Scholar 

  44. Y. Wang, Y.-J. Hu, B. Bocklund, S.-L. Shang, B.-C. Zhou, Z.-K. Liu, L.-Q. Chen, Phys. Rev. B 98, 224101 (2018). https://doi.org/10.1103/PhysRevB.98.224101

    Article  ADS  Google Scholar 

  45. G. Ding, G. Gao, K. Yao, Sci. Rep. 5, 9567 (2015). https://doi.org/10.1038/srep09567

    Article  ADS  Google Scholar 

  46. D. Parker, D.J. Singh, Phys. Rev. B 85, 125209 (2012). https://doi.org/10.1103/PhysRevB.85.125209

    Article  ADS  Google Scholar 

  47. M.J. Graf, S.K. Yip, J.A. Sauls, D. Rainer, Phys. Rev. B 53, 15147 (1996). https://doi.org/10.1103/PhysRevB.53.15147

    Article  ADS  Google Scholar 

  48. Y. Gelbstein, O. Ben-Yehuda, E. Pinhas, T. Edrei, Y. Sadia, Z. Dashevsky, M.P. Dariel, J. Electron. Mater. 38, 1478 (2009). https://doi.org/10.1007/s11664-008-0652-8

    Article  ADS  Google Scholar 

  49. A. Balandin, K.L. Wang, Phys. Rev. B 58, 1544 (1998). https://doi.org/10.1103/PhysRevB.58.1544

    Article  ADS  Google Scholar 

  50. D. Campi, L. Paulatto, G. Fugallo, F. Mauri, M. Bernasconi, Phys. Rev. B 95, 024311 (2017). https://doi.org/10.1103/PhysRevB.95.024311

    Article  ADS  Google Scholar 

Download references

Acknowledgements

C.P. and L.B. also thank the DARPA grant HR0011-15-2-0038 (MATRIX program). We would like to thank K. Patel for her valuable help in the computation procedure of the data. This research is supported by the Arkansas High Performance Computing Center which is funded through multiple National Science Foundation grants and the Arkansas Economic Development Commission.

Author information

Authors and Affiliations

Authors

Contributions

ASG performed the calculations and wrote the paper. CP contributed in the calculations and discussion of the polar polarization and guided ASG in most of her calculations, AP and RH helped in thermoelectric and phonon calculations, LB helped in the discussion and reviewing the paper and BH is the academic advisor who suggested the project, helped in the discussion and reviewed the paper.

Corresponding author

Correspondence to Aida Sheibani Gunder.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 251 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunder, A.S., Paillard, C., Pandit, A. et al. Effect of the polar distortion on the thermoelectric properties of GeTe. Eur. Phys. J. B 94, 11 (2021). https://doi.org/10.1140/epjb/s10051-020-00019-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-020-00019-1

Navigation