Skip to main content
Log in

Structural and electronic properties of fluorinated boron nitride monolayers

  • Regular Article - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In the present work, the relative stability and electronic structures of fluorinated BN monolayers were investigated using first-principles calculations. The studied structures are fluorinated h-BN monolayers in the chair-like and in a boat-like configuration. It is also investigated the effect of typical point defects, namely, anti-sites, the incorporation of a substitutional carbon atom and vacant fluorine decoration. The obtained results indicate that chair-like fully fluorinated BN monolayers are more stable than boat-like configurations. Furthermore, the introduction of a substitutional carbon impurity, as well as the removal of an F atom, induces the appearance of a net magnetic moment. In addition, it is observed that the presence of defects or the absence of an F atom produces significant changes in the band structure when compared with a non-defective fully fluorinated BN layer.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All information needed to replicate the calculations is provided in the text.]

References

  1. R. Mas-Ballesté, C. Gómez-Navarro, J. Gómez-Herrero, F. Zamora, Nanoscale 3, 20 (2011)

    Article  ADS  Google Scholar 

  2. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Proc. Nat. Acad. Sci. U.S.A. 10451–10453, (2005)

  3. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183–191 (2007)

    Article  ADS  Google Scholar 

  4. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nat. 438, 197–200 (2005)

    Article  ADS  Google Scholar 

  5. A.K. Geim, Sci. 324, 1530–1534 (2009)

    Article  ADS  Google Scholar 

  6. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Sci. 306, 666–669 (2004)

    Article  ADS  Google Scholar 

  7. W.Q. Han, L. Wu, Y. Zhu, K. Watanabe, T. Taniguchi, Appl. Phys. Lett. 93, 223103 (2008)

    Article  ADS  Google Scholar 

  8. H. Wang, Y. Zhao, Y. Xie, X. Ma, X. Zhang, J. Semicond. 38, 031003 (2017)

    Article  ADS  Google Scholar 

  9. F. Hui, C. Pan, Y. Shi, Y. Ji, E. Grustan-Gutierrez, M. Lanza, Microelectron. Eng. 163, 119–133 (2016)

    Article  Google Scholar 

  10. G.C. Constantinescu, N.D. Hine, Nano Lett. 16, 2586–2594 (2016)

    Article  ADS  Google Scholar 

  11. J. Bao, M. Edwards, S. Huang, Y. Zhang, Y. Fu, X. Lu, Z. Yuan, K. Jeppson, J. Liu, J. Phys. D 49, 265501 (2016)

    Article  ADS  Google Scholar 

  12. K.H. Oh, D. Lee, M.J. Choo, K.H. Park, S. Jeon, S.H. Hong, J.K. Park, J.W. Choi, A.C.S. Appl, Mater. Interfaces 6, 7751–7758 (2014)

    Article  Google Scholar 

  13. D. Chimene, D.L. Alge, A.K. Gaharwar, Adv. Mater. 27, 7261–7284 (2015)

    Article  Google Scholar 

  14. J. Yin, J. Li, Y. Hang, J. Yu, G. Tai, X. Li, Z. Zhang, W. Guo, Small 12, 2942 (2016)

    Article  ADS  Google Scholar 

  15. D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, C. Zhi, ACS Nano 4, 2979 (2010)

    Article  Google Scholar 

  16. A. Pakdel, Y. Bando, D. Golberg, Chem. Soc. Rev. 43, 934–959 (2014)

    Article  Google Scholar 

  17. C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Nat. Nanotechnol. 5, 722 (2010)

    Article  ADS  Google Scholar 

  18. J.O. Sofo, A.S. Chaudhari, G.D. Barder, Phys. Rev. B 75, 153401 (2007)

    Article  ADS  Google Scholar 

  19. D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall1, A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, K. S. Novoselov, Sci. 323, 610 (2009)

  20. Y. Wang, Y. Ding, S. Shi, W. Tang, Appl. Phys. Lett. 98, 163104 (2011)

    Article  ADS  Google Scholar 

  21. Q. Weng, X. Wang, Y. Bando, D. Golberg, Chem. Soc. Rev. 45, 3989–4012 (2016)

    Article  Google Scholar 

  22. N. Berseneva, A. Gulans, A.V. Krasheninnikov, R.M. Nieminen, Phys. Rev. B 87, 035404 (2013)

    Article  ADS  Google Scholar 

  23. M.R.A. Monazam, U. Ludacka, H.P. Komsa, J. Kotakoski, Appl. Phys. Lett. 115, 071604 (2019)

    Article  ADS  Google Scholar 

  24. S. Azevedo, J.R. Kaschny, Eur. Phys. J. B 86, 395 (2013)

    Article  ADS  Google Scholar 

  25. A. Bhattacharya, S. Bhattacharya, G.P. Das, Phys. Rev. B 85, 035415 (2012)

    Article  ADS  Google Scholar 

  26. S. Azevedo, J.R. Kaschny, C.M.C. de Castilho, F. de Brito Mota, Eur. Phys. J. B 67, 507 (2009)

  27. R.F. Liu, C. Cheng, Phys. Rev. B 76, 014405 (2007)

    Article  ADS  Google Scholar 

  28. J. Ying, X.W. Zhang, Z.G. Yin, H.R. Tan, S.G. Zhang, Y.M. Fan, J. Appl. Phys. 109, 023716 (2011)

    Article  ADS  Google Scholar 

  29. S. Noorizadeh, E. Shakerzadeh, Comput. Mater. Sci. 56, 122 (2012)

    Article  Google Scholar 

  30. B. Huang, H. Xiang, J. Yu, S.H. Wei, Phys. Rev. Lett. 108, 206802 (2012)

    Article  ADS  Google Scholar 

  31. L. Melo, O.F.P. Santos, J.R. Martins, S. Azevedo, J.R. Kaschny, Appl. Phys. A 125, 790 (2019)

    Article  ADS  Google Scholar 

  32. H. Park, A. Wadehra, J.W. Wilkins, A.H. Castro Neto, Appl. Phys. Lett. 100, 253115 (2012)

  33. Z. Guan, S. Ni, S. Hu, ACS Omega 4, 10293 (2019)

    Article  Google Scholar 

  34. H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, P.D. Ye, ACS Nano 8, 4033 (2014)

    Article  Google Scholar 

  35. Y.G. Zhou, P. Yang, Z.G. Wang, X.T. Zu, H.Y. Xiao, X. Sun, M.A. Khaleelb, F. Gao, Phys. Chem. Chem. Phys. 13, 7378 (2011)

    Article  Google Scholar 

  36. J. Yin, J. Li, Y. Hang, J. Yu, G. Tai, X. Li, Z. Zhang, W. Guo, Small 12, 2942–2968 (2016)

    Article  ADS  Google Scholar 

  37. L. Song, Z. Liu, A.L.M. Reddy, N.T. Narayanan, J. Taha-Tijerina, J. Peng, G. Gao, J. Lou, R. Vajtai, P.M. Ajayan, Adv. Mater. 24, 4878–4895 (2012)

    Article  Google Scholar 

  38. L.G.S. Leite, B.L. Bernardo, S. Azevedo, Solid State Commun. 253, 31–36 (2017)

    Article  ADS  Google Scholar 

  39. C. Sun, F. Ma, L. Cai, A. Wang, Y. Wu, M. Zhao, W. Yan, X. Hao, Sci. Rep. 7, 6617 (2017)

    Article  ADS  Google Scholar 

  40. J. Zhao, Z. Chen, Phys. Chem. C 47(119), 26348–26354 (2015)

    Article  Google Scholar 

  41. N.A. Lvova, A.I. Ryazanova, D.O. Popkov, Russ. J. Phys. Chem. 94, 415–422 (2020)

    Article  Google Scholar 

  42. X. Lv, Z. Xu, J. Li, J. Chen, Q. Liu, App. Surf. Sci. 376, 97–104 (2016)

    Article  ADS  Google Scholar 

  43. V.V. Ivanovskaya, A.L. Ivanovskii, Russ. Chem. Rev. 80, 727–749 (2011)

    Article  ADS  Google Scholar 

  44. J. Zhou, Q. Wang, Q. Sun, P. Jena, Phys. Rev. B 81, 085442 (2010)

    Article  ADS  Google Scholar 

  45. S. Radhakrishnan, D. Das, A. Samanta, C.A. Reyes, L. Deng, L.B. Alemany, T.K. Weldeghiorghis, V.N. Khabashesku1, V. Kochat, Z. Jin, P.M. Sudeep, A.A. Martí, C.W. Chu, A. Roy, C.S. Tiwary1, A.K. Singh, P.M. Ajayan1, Sci. Adv. 3, e1700842 (2017)

  46. J. Zhou, J. Zhao, Z. Chen, P.R. Schleyer, J. Phys. Chem. B 110, 25678–25685 (2006)

    Article  Google Scholar 

  47. C. Tang, Y. Bando, Y. Huang, S. Yue, C. Gu, F. Xu, D. Golberg, J. Am. Chem. Soc. 127, 6552–6553 (2005)

    Article  Google Scholar 

  48. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  ADS  Google Scholar 

  49. D. Sanchez-Portal, P. Ordejon, E. Artacho, J.M. Soler, Int. J. Quantum Chem. 65, 453 (1997)

    Article  Google Scholar 

  50. N. Troullier, J.L. Martins, Phys. Rev. B. 43, 1993 (1991)

    Article  ADS  Google Scholar 

  51. L. Kleinman, D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982)

    Article  ADS  Google Scholar 

  52. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 38630 (1996)

    Article  Google Scholar 

  53. S. Azevedo, M.S. Mazzoni, R.W. Nunes, H. Chacham, Phys. Rev. B 70, 205412 (2004)

    Article  ADS  Google Scholar 

  54. E.V. Anikina, V.P. Beskachko, Bull. South Ural State University: Math. Mech. and Phys. 12 (1), 55 (2020)

  55. S.F. Boys, F. Bernardi, Mol. Phys. 19, 553 (1970)

    Article  ADS  Google Scholar 

  56. M.S.C. Mazzoni, R.W. Nunes, S. Azevedo, H. Chacham, Phys. Rev. B 73, 073108 (2006)

    Article  ADS  Google Scholar 

  57. G. Zhu, Q. Sun, Y. Kawazoe, P. Jena, Int. J. Hydrogen Energy 40, 3689 (2015)

    Article  Google Scholar 

  58. E. Montes, U. Schwingenschlogl, Phys. Rev. B 94, 035412 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the substantial support from Brazilian science agencies CNPq, CAPES, project INCT Nanomateriais de Carbono and Pronex Fapesq-PB/CNPq.

All authors contributed equally to the calculations, data analysis and manuscript writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Kaschny.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 1695 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, D., Azevedo, S. & Kaschny, J.R. Structural and electronic properties of fluorinated boron nitride monolayers. Eur. Phys. J. B 94, 2 (2021). https://doi.org/10.1140/epjb/s10051-020-00012-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-020-00012-8

Navigation