Skip to main content
Log in

Impact of the vertical strain on the Schottky barrier height for graphene/AlN heterojunction: a study by the first-principles method

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Recent years, graphene-based van der Waals (vdW) heterojunction becomes more and more popular in optoelectronics, nanoelectronics, and spintronics device area. Besides, the modulation of Schottky barrier height (SBH) is rather desired to improve the performance of corresponding devices. In the current study, we have focused on the interfacial characteristics and electronic structure of graphene/AlN heterostructure by the first-principles calculations. The results show the intrinsic electronic properties are preserved after graphene and AlN contacting due to the weak interaction between two sublayers. The Bader charge analysis shows that the electrons are transferred from AlN to graphene, leading to graphene as an acceptor while AlN as a donor. Besides, by varying the interlayer distance from 2.5 to 4.3 Å, we found both the n-SBH and p-SBH are significantly tuned. In addition, the optical absorption intensity is enhanced significantly in the graphene/AlN heterojunction. Our findings imply that the SBH is controllable, which is highly desirable in the nano-electronic devices.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.]

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–9 (2004)

    Article  ADS  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197–200 (2005)

    Article  ADS  Google Scholar 

  3. Q.H. Wang, K. Kalantar-Zadeh, A. Kis et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012)

    Article  ADS  Google Scholar 

  4. X. Duan, C. Wang, A. Pan et al., Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chem. Soc. Rev. 44(24), 8859–76 (2015)

    Article  Google Scholar 

  5. W. Choi, N. Choudhary, G.H. Han et al., Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20(3), 116–30 (2017)

    Article  Google Scholar 

  6. Z. Gao, Z. Zhou, D. Tománek, Degenerately doped transition metal decalcomania as ohmic homojunction contacts to transition metal dichalcogenide semiconductors. ACS Nano 13(5), 5103–11 (2019)

    Article  Google Scholar 

  7. H. Liu, A.T. Neal, Z. Zhu et al., Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Appl. Nano Mater. 8(4), 4033–41 (2014)

    Google Scholar 

  8. A. Carvalho, M. Wang, X. Zhu et al., Phosphorene: from theory to applications. Nat. Rev. Mater. 1(6), 16061 (2016)

    Article  ADS  Google Scholar 

  9. A. Naseri, M. Samadi, A. Pourjavadi et al., Graphitic carbon nitride (g-C\(_{3\text{ N}_{4}})\)-based photocatalysts for solar hydrogen generation: recent advances and future development directions. J. Mater. Chem. A 5(45), 23406–33 (2017)

    Article  Google Scholar 

  10. W.-J. Ong, L.-L. Tan, Y.H. Ng et al., Graphitic carbon nitride (g-C\(_{3}\text{ N}_{{4}})\)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116(12), 7159–329 (2016)

    Article  Google Scholar 

  11. A.K. Singh, H.L. Zhuang, R.G. Hennig, Ab initio synthesis of single-layer III–V materials. Phys. Rev. B 89(24), 245431 (2014)

    Article  ADS  Google Scholar 

  12. Z. Zhang, Z. Geng, D. Cai et al., Structure, electronic and magnetic properties of hexagonal boron nitride sheets doped by 5d transition metal atoms: first-principles calculations and molecular orbital analysis. Physica E (Amst., Neth.) 65(7), 24–29 (2015)

    Article  ADS  Google Scholar 

  13. A. Onen, D. Kecik, E. Durgun et al., GaN: from three- to two-dimensional single-layer crystal and its multilayer van der Waals solids. Phys. Rev. B 93(8), 085431 (2016)

    Article  ADS  Google Scholar 

  14. D. Kecik, A. Onen, M. Konuk et al., Fundamentals, progress, and future directions of nitride-based semiconductors and their composites in two-dimensional limit: a first-principles perspective to recent synthesis. Appl. Phys. Rev. 5(1), 011105 (2018)

    Article  ADS  Google Scholar 

  15. Z.Y. Al Balushi, K. Wang, R.K. Ghosh et al., Two-dimensional gallium nitride realized via graphene encapsulation. Nat. Mater. 15(11), 1166–71 (2016)

    Article  ADS  Google Scholar 

  16. Z. Zhang, M. Hua, J. He et al., Ab initio study of impact of nitridation at amorphous-SiN x /GaN interface. Appl. Phys. Express 11(8), 081003 (2018)

    Article  ADS  Google Scholar 

  17. J. Chen, Z. Zhang, Y. Guo et al., Schottky barrier height at metal/ZnO interface: a first-principles study. Microelectron. Eng. 216(8), 111056 (2019)

    Article  Google Scholar 

  18. Z. Zhang, Y. Guo, J. Robertson, Atomic structure and band alignment at Al\(_2\)O\(_3\)/GaN, Sc\(_2\)O\(_3\)/GaN and La\(_2\)O\(_3\)/GaN interfaces: a first-principles study. Microelectron. Eng. 216, 111039 (2019)

    Article  Google Scholar 

  19. X. Liu, Z. Zhang, Z. Luo et al., Tunable electronic properties of graphene/g-AlN heterostructure: the effect of vacancy and strain engineering. Nanomaterials 9(12), 1674 (2019)

    Article  Google Scholar 

  20. X. Gao, Y. Shen, Y. Ma et al., Graphene/g-GeC bilayer heterostructure: modulated electronic properties and interface contact via external vertical strains and electric fields. Carbon 146(5), 337–47 (2019)

    Article  Google Scholar 

  21. W.X. Zhang, C.H. Shi, C. He et al., External-strain induced transition from Schottky to ohmic contact in Graphene/InS and Graphene/Janus In2SSe heterostructures. J. Solid State Chem. 289(9), 121511 (2020)

    Article  Google Scholar 

  22. J.E. Padilha, A. Fazzio, A.J. Da Silva, Van der Waals heterostructure of phosphorene and graphene: tuning the Schottky barrier and doping by electrostatic gating. Phys. Rev. Lett. 114(6), 066803 (2015)

    Article  ADS  Google Scholar 

  23. A.F. Young, P. Kim, Quantum interference and Klein tunnelling in graphene heterojunctions. Nat. Phys. 5(3), 222 (2009)

    Article  Google Scholar 

  24. J.Y. Kwak, J. Hwang, B. Calderon et al., Electrical characteristics of multilayer MoS\(_{2}\) FET’s with MoS\(_{2}\)/graphene heterojunction contacts. Nano Lett. 14(8), 4511–4516 (2014)

    Article  ADS  Google Scholar 

  25. Z. Deng, X. Wang, Strain engineering on the electronic states of two-dimensional GaN/graphene heterostructure. RSC Adv. 9(45), 26024–26029 (2019)

    Article  ADS  Google Scholar 

  26. R. Cao, Z. Zhang, C. Wang et al., Interfacial bonding and electronic structure of GaN/GaAs interface: a first-principles study. J. Appl. Phys. 117(13), 135302 (2015)

    Article  ADS  Google Scholar 

  27. Z. Deng, X. Wang, J. Cui, Effect of interfacial defects on the electronic properties of graphene/g-GaN heterostructures. RSC Adv. 9(24), 13418–23 (2019)

    Article  ADS  Google Scholar 

  28. W. Wang, Y. Zheng, X. Li et al., 2D AlN layers sandwiched between graphene and Si substrates. Adv. Mater. 31(1), 1803448 (2019)

    Article  Google Scholar 

  29. P. Tsipas, S. Kassavetis, D. Tsoutsou et al., Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag(111). Appl. Phys. Lett. 103(25), 251605 (2013)

    Article  ADS  Google Scholar 

  30. Y. He, Y. Yang, Z. Zhang et al., Strain-induced electronic structure changes in stacked van der Waals heterostructures. Nano Lett. 16(5), 3314–3320 (2016)

    Article  ADS  Google Scholar 

  31. S. Deng, A.V. Sumant, V. Berry, Strain engineering in two-dimensional nanomaterials beyond graphene. Nano Today 22(4), 14–35 (2018)

    Article  Google Scholar 

  32. T. Huang, W. Wei, X. Chen et al., Strained 2D layered materials and heterojunctions. Ann. Phys. (Berl., Ger.) 531(4), 1800465 (2019)

    Article  ADS  Google Scholar 

  33. A. Sciuto, A. La Magna, G.G.N. Angilella et al., Extensive fermi-level engineering for graphene through the interaction with aluminum nitrides and oxides. Phys. Status Solidi RRL 1(3), 1900399 (2019)

    Google Scholar 

  34. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–86 (1996)

    Article  ADS  Google Scholar 

  35. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)

    Article  ADS  Google Scholar 

  36. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–79 (1994)

    Article  ADS  Google Scholar 

  37. H.J. Monkhorst, Special points for Brillouin-zone integrations. Phys. Rev. B 13(5), 5188–92 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  38. S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–99 (2006)

    Article  Google Scholar 

  39. V. Wang, N. Xu, J.C. Liu et al. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code (2019). arXiv:1908.08269. Accessed 25 Aug 2019

  40. Z. Zhang, B. Huang, Q. Qian et al., Strain-tunable III-nitride/ZnO heterostructures for photocatalytic water-splitting: a hybrid functional calculation. APL Mater. 8(4), 041114 (2020)

    Article  ADS  Google Scholar 

  41. M. Sun, J.-P. Chou, J. Yu et al., Effects of structural imperfection on the electronic properties of graphene/WSe\(_{{2}}\) heterostructures. J. Mater. Chem. C 5(39), 10383–90 (2017)

    Article  Google Scholar 

  42. V. Mansurov, T. Malin, Y. Galitsyn et al., Graphene-like AlN layer formation on (111)Si surface by ammonia molecular beam epitaxy. J. Cryst. Growth 428(10), 93–97 (2015)

    Article  ADS  Google Scholar 

  43. F. Zhang, W. Li, Y. Ma et al., Strain effects on the Schottky contacts of graphene and MoSe\(_{2}\) heterobilayers. Physica E (Amst., Neth.) 103(8), 284–288 (2018)

    Article  ADS  Google Scholar 

  44. H.V. Phuc, N.N. Hieu, B.D. Hoi et al., Out-of-plane strain and electric field tunable electronic properties and Schottky contact of graphene/antimonene heterostructure. Superlattices Microstruct. 112(5), 554–60 (2017)

    Article  ADS  Google Scholar 

  45. S. Tongay, W. Fan, J. Kang et al., Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. Nano Lett. 14(6), 3185–90 (2014)

    Article  ADS  Google Scholar 

  46. J. Bardeen, Surface states and rectification at a metal semi-conductor contact. Phys. Rev. 71(10), 717 (1947)

    Article  ADS  MathSciNet  Google Scholar 

  47. C. Si, Z. Lin, J. Zhou et al., Controllable Schottky barrier in GaSe/graphene heterostructure: the role of interface dipole. 2D Mater. 4(1), 015027 (2016)

    Article  Google Scholar 

  48. L. Matthes, O. Pulci, F. Bechstedt, Optical properties of two-dimensional honeycomb crystals graphene, silicene, germanene, and tinene from first principles. New J. Phys. 16(10), 105007 (2014)

    Article  ADS  Google Scholar 

  49. L. Matthes, O. Pulci, F. Bechstedt, Influence of out-of-plane response on optical properties of two-dimensional materials: first principles approach. Phys. Rev. B 94(20), 205408 (2016)

    Article  ADS  Google Scholar 

  50. F. Hüser, T. Olsen, K.S. Thygesen, How dielectric screening in two-dimensional crystals affects the convergence of excited-state calculations: monolayer MoS2. Phys. Rev. B 88(24), 245309 (2013)

    Article  ADS  Google Scholar 

  51. J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118(18), 8207–8215 (2003)

    Article  ADS  Google Scholar 

  52. J. Heyd, G.E. Scuseria, M. Ernzerhof, Erratum: Hybrid functionals based on a screened Coulomb potential [J. Chem. Phys. 118, 8207 (2003)]. J. Chem. Phys. 124(21), 219906 (2006)

    Article  ADS  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China, Grant number 11664005; Guizhou Science and Technology Foundation, Grant number 2020,1Y021.

Author information

Authors and Affiliations

Authors

Contributions

X.L. mainly complete the calculations and the draft writing of this paper. Z.Z. helps to analyze some results and give some important suggestions. B.L. provides the software. Z.D. helps to modify the manuscripts. Z.L. provides the main idea of this paper and helps to modify the manuscript very carefully.

Corresponding author

Correspondence to Zijiang Luo.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhang, Z., Lv, B. et al. Impact of the vertical strain on the Schottky barrier height for graphene/AlN heterojunction: a study by the first-principles method. Eur. Phys. J. B 94, 28 (2021). https://doi.org/10.1140/epjb/s10051-020-00010-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-020-00010-w

Navigation