Skip to main content
Log in

Exchange-correlation effects and layer-thickness affect plasmon modes in gapped graphene-GaAs double-layer systems

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We calculate collective excitations and damping rate in a double layer structure consisting of one monolayer gapped graphene sheet and a GaAs quantum well isolating two-dimensional electron gas within random-phase approximation at zero temperature. We observed that both in-phase optical and out-of-phase acoustic plasmon mode exist and can be un-damped in the system. The acoustic curve merges to single-particle excitation area boundary and disappear while the OP one crosses this border and continues in the region. Our analytical calculations present that the quantum well width has significant contribution only to acoustic mode in long wavelength limit. On the other hand, numerical results demonstrate that while both quantum well width and exchange–correlation effects decrease AC plasmon frequency, the OP one decreases with the increase in the band gap. Finally, taking into account local-field-correction in calculations leads to the decrease in only AC plasmon frequency, found mainly in large wave-vectors region.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Because of our organization’s policies, the authors are not allowed to publish the data relevant to the article.]

References

  1. E.H. Hwang, S. DasSarma, Phys. Rev. B 75, 205418 (2007)

    Article  ADS  Google Scholar 

  2. S. DasSarma, E.H. Hwang, E. Rossi, Phys. Rev. B 81, 161407 (2010)

    Article  ADS  Google Scholar 

  3. M.R. Ramezanali, M.M. Vazifeh, R. Asgari, M. Polini, A.H. MacDonald, J. Phys. A Math. Theor. 42, 214015 (2009)

    Article  ADS  Google Scholar 

  4. A. Scholz, T. Stauber, J. Schliemann, Phys. Rev. B 88, 035135 (2013)

    Article  ADS  Google Scholar 

  5. X. Li, H. Zhu, J. Materiom. 1, 33–44 (2015)

    Article  ADS  Google Scholar 

  6. A.H.Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  7. J. Wei, Z. Zang, Y. Zhang, M. Wang, J. Du, X. Tang, Opt. Lett. 42, 911 (2017)

    Article  ADS  Google Scholar 

  8. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  9. A.K. Geim, A.H. MacDonald, Phys. Today 60, 35 (2007)

    Google Scholar 

  10. E.V. Gorbar, V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Phys. Rev. B 66, 045108 (2002)

    Article  ADS  Google Scholar 

  11. Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)

    Article  ADS  Google Scholar 

  12. Y. Yao, F. Ye, X.-L. Qi, S.-C. Zhang, Z. Fang, Phys. Rev. B 75, 041401 (2007)

    Article  ADS  Google Scholar 

  13. S.Y. Zhou, G.-H. Gweon, A.V. Fedorov, P.N. First, W.A. de Heer, D.-H. Lee, F. Guinea, A.H.Castro Neto, A. Lanzara, Nat. Mater. 6, 770 (2007)

    Article  ADS  Google Scholar 

  14. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  15. G. Li, A. Luican, E.Y. Andrei, Phys. Rev. Lett 102, 176804 (2009)

    Article  ADS  Google Scholar 

  16. E.V. Gorbar, V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Phys. Rev. B 78, 085437 (2008)

    Article  ADS  Google Scholar 

  17. P.K. Pyatkovskiy, J. Phys. Condens. Matter 21, 025506 (2009)

    Article  ADS  Google Scholar 

  18. B. Wunsch, T. Stauber, F. Sols, F. Guinea, New J. Phys. 8, 318 (2006)

    Article  ADS  Google Scholar 

  19. H.L.Koppens Frank, D.E. Chang, F.J. Garcia de Abajo, Nano Lett. 11, 3370 (2011)

    Article  ADS  Google Scholar 

  20. M. Polini, R. Asgari, G. Borghi, Y. Barlas, T. Pereg-Barnea, A.H. MacDonald, Phys. Rev. B 77, 081411(R) (2008)

    Article  ADS  Google Scholar 

  21. A. Politano, A. Cupolillo, G. Di Profio, H.A. Arafat, G. Chiarello, E. Curcio, J. Phys. Condens. Matter 28, 363003 (2016)

    Article  Google Scholar 

  22. F.J. Garcia de Abajo, ACS Photon. 1, 135 (2014)

    Article  Google Scholar 

  23. P. Avouris, M. Freitag, IEEE 20, 6000112 (2014)

    Google Scholar 

  24. D.K. Patel, S.S.Z. Ashraf, A.C. Sharma, Phys. Stat. Sol. 252(8), 1817 (2015)

    Article  ADS  Google Scholar 

  25. V. Ryzhii, M. Ryzhii, V. Mitin, M.S. Shur, A. Satou, T. Otsuji, J. Appl. Phys. 113, 174506 (2013)

    Article  ADS  Google Scholar 

  26. A. Politano, A. Pietro, G. Di Profio, V. Sanna, A. Cupolillo, S. Chakraborty, H. Arafa, E. Curcio, Adv. Mater. 29(2), 201603504 (2017)

    Article  Google Scholar 

  27. A.N. Grigorenko, M. Polini, K.S. Novoselov, Nat. Photon. 6, 749 (2012)

    Article  ADS  Google Scholar 

  28. A. Politano, H.K. Yu, D. Farías, G. Chiarello, Phys. Rev. B 97, 035414 (2018)

    Article  ADS  Google Scholar 

  29. F.H.L. Koppens, T. Mueller, Ph Avouris, A.C. Ferrari, M.S. Vitiello, M. Polini, Nat. Nanotechnol. 9, 780 (2014)

    Article  ADS  Google Scholar 

  30. S.S. Sunku, G.X. Ni, B.Y. Jiang, H. Yoo, A. Sternbach, A.S. McLeod, T. Stauber, L. Xiong, T. Taniguchi, K. Watanabe, P. Kim, M.M. Fogler, D.N. Basov, Science 362, 1153 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  31. B.Y. Jiang, G.X. Ni, Z. Addison, J.K. Shi, X. Liu, ShYF Zhao, P. Kim, E.J. Mele, D.N. Basov, M.M. Foglera, Nano Lett. 17, 7080 (2017)

    Article  ADS  Google Scholar 

  32. G.X. Ni, A.S. McLeod, Z. Sun, L. Wang, L. Xiong, K.W. Post, S.S. Sunku, B.-Y. Jiang, J. Hone, C.R. Dean, M.M. Fogler, D.N. Basov, Nature 557, 530 (2018)

    Article  ADS  Google Scholar 

  33. M.B. Lundeberg, Y. Gao, R. Asgari, Ch. Tan, B.V. Duppen, M. Autore, P.A. González, A. Woessner, K. Watanabe, T. Taniguchi, R. Hillenbrand, J. Hone, M. Polini, F.H.L. Koppens, Science 357, 187 (2017)

    Article  ADS  Google Scholar 

  34. M.B. Lundeberg, M.B. Lundeberg, Y. Gao, R. Asgari, Ch. Tan, B.V. Duppen, M. Autore, P.A. González, A. Woessner, K. Watanabe, T. Taniguchi, R. Hillenbrand, J. Hone, M. Polini, F.H.L. Koppens, Nat. Mater. 16, 204 (2017)

    Article  ADS  Google Scholar 

  35. G.X. Ni, L. Wang, M.D. Goldflam, M. Wagner, Z. Fei, A.S. McLeod, M.K. Liu, F. Keilmann, B. Özyilmaz, A.H.Castro Neto, J. Hone, M.M. Fogler, D.N. Basovet, Nat. Photon. 10, 244 (2016)

    Article  ADS  Google Scholar 

  36. D.K. Patel, A.C. Sharma, S.S.Z. Ashraf, Phys. Stat. Sol. B 252(2), 282 (2015)

    Article  ADS  Google Scholar 

  37. W.B. Lu, W. Zhu, H.J. Xu, Z.H. Ni, Z.G. Dong, T.J. Cui, Opt. Express 21, 10475 (2013)

    Article  ADS  Google Scholar 

  38. J. Long, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H.A. Bechtel, X. Liang, A. Zettl, Y.R. Shen, F. Wang, Nat. Nanotechnol. 6, 630 (2011)

    Article  ADS  Google Scholar 

  39. Z. Fei, A.S. Rodin, G.O. Andreev, W. Bao, A.S. McLeod, M. Wagner, L.M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M.M. Fogler, A.H.Castro Neto, C.N. Lau, F. Keilmann, D.N. Basov, Nature 487, 82 (2012)

    Article  ADS  Google Scholar 

  40. A. Qaiumzadeh, R. Asgari, Phys. Rev. B 79, 075414 (2009)

    Article  ADS  Google Scholar 

  41. E.H. Hwang, S.D. Sarma, Phys. Rev. B 80, 205405 (2009)

    Article  ADS  Google Scholar 

  42. T. Vazifehshenas, T. Amlaki, M. Farmanbar, F. Parhizgar, Phys. Lett. A 374, 4899 (2010)

    Article  ADS  Google Scholar 

  43. S.M. Badalyan, F.M. Peeters, Phys. Rev. B 85, 195444 (2012)

    Article  ADS  Google Scholar 

  44. D.V. Tuan, N.Q. Khanh, Phys. E 54, 267 (2013)

    Article  Google Scholar 

  45. T. Stauber, G. Gómez-Santos, Phys. Rev. B 85, 075410 (2012)

    Article  ADS  Google Scholar 

  46. T. Stauber, G. Gómez-Santos, New J. Phys. 14, 105018 (2012)

    Article  Google Scholar 

  47. T. Stauber, J. Phys. Condens. Matter 26, 123201 (2014)

    Article  Google Scholar 

  48. N.V. Men, D.T.K. Phuong, Phys. Lett. A 384, 126221 (2020)

    Article  Google Scholar 

  49. N.V. Men, N.Q. Khanh, D.T.K. Phuong, Phys. E 118, 113859 (2020)

    Article  Google Scholar 

  50. N.Q. Khanh, N.V. Men, Phys. Stat. Solidi B 255(7), 1700656 (2018)

    Article  Google Scholar 

  51. Dang Khanh Linh, Nguyen Quoc Khanh, Superlatt. Microstruct. 114, 406 (2018)

    Article  ADS  Google Scholar 

  52. Nguyen Quoc Khanh, Dang Khanh Linh, Superlatt. Microstruct. 116, 181 (2018)

    Article  ADS  Google Scholar 

  53. A. Principi, M. Carrega, R. Asgari, V. Pellegrini, M. Polini, Phys. Rev. B 86, 085421 (2012)

    Article  ADS  Google Scholar 

  54. B. Scharf, A. Matos-Abiague, Phys. Rev. B 86, 115425 (2012)

    Article  ADS  Google Scholar 

  55. G. Gonzalez de la Cruz, Solid State Commun. 262, 11 (2017)

    Article  ADS  Google Scholar 

  56. N.V. Men, N.Q. Khanh, Phys. Lett. A 381, 3779 (2017)

    Article  ADS  Google Scholar 

  57. N.V. Men, N.Q. Khanh, Can. J. Phys. 96, 615 (2018)

    Article  ADS  Google Scholar 

  58. N.N. Men, D.T.K. Phuong, Int. J. Mod. Phys. B 32(23), 1850256 (2018)

    Article  ADS  Google Scholar 

  59. N.V. Men, D.T.K. Phuong, Int. J. Mod. Phys. B 33(16), 1950174 (2019)

    Article  ADS  Google Scholar 

  60. D.T.K. Phuong, N.V. Men, Sol. Stat. Commun. 314–315, 113942 (2020)

    Article  Google Scholar 

  61. A. Czachora, A. Holas, S.R. Sharma, K.S. Singwi, Phys. Rev. B 25, 2144 (1982)

    Article  ADS  Google Scholar 

  62. A. Gold, Z. Phys. B 103, 491 (1997)

    Article  ADS  Google Scholar 

  63. I.V. Bondarev, V.M. Shalaev, Opt. Mater. Express 7, 3731 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant number 103.01-2020.11.

Author information

Authors and Affiliations

Authors

Contributions

PDTK: data curation, visualization, writing—original draft. MVN: conceptualization, methodology, writing—review and editing, software, validation.

Corresponding author

Correspondence to Men Van Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong Thi Kim, P., Van Nguyen, M. Exchange-correlation effects and layer-thickness affect plasmon modes in gapped graphene-GaAs double-layer systems. Eur. Phys. J. B 94, 14 (2021). https://doi.org/10.1140/epjb/s10051-020-00006-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-020-00006-6

Navigation