Skip to main content

The movement of a one-dimensional Wigner solid explained by a modified Frenkel-Kontorova model

Abstract

We propose a Frenkel-Kontorova model for a 1D chain of electrons forming a Wigner solid over 4He. It is a highly idealized picture, but with the model at hand we can study the movement of the chain. We find out that the energetically most preferable movement is the successive sliding of a kink or an antikink through the chain. Then the force for a movement does not depend on the length of the chain. The force uniformly applied to all electrons must be larger than a force exciting only a kink or an antikink. We calculate two cases, one with stiff ‘springs’ between the electrons and one with weak ‘springs’. The side potential of the ‘dimples’ is additionally damped at the periphery. We study the cases with 33, 66, and 101 particles.

Graphical abstract

This is a preview of subscription content, access via your institution.

References

  1. I. Shapir, A. Hamo, S. Pecker, C.P. Moca, Ö. Legeza, G. Zarand, S. Ilani, Science 364, 870 (2019)

    ADS  Article  Google Scholar 

  2. C.C. Grimes, G. Adams, Phys. Rev. Lett. 42, 795 (1979)

    ADS  Article  Google Scholar 

  3. D.S. Fisher, B.I. Halperin, P.M. Platzman, Phys. Rev. Lett. 42, 798 (1979)

    ADS  Article  Google Scholar 

  4. E.Y. Andrei (ed.), in Two-Dimensional Electron Systems on Helium and other Cryogenic Substrates, Physics and Chemistry of Materials with Low-Dimensional Structures (PCMALS) (Springer, Berlin, 1997), vol. 19

  5. M.I. Dykman, C. Fang-Yen, M.J. Lea, Phys. Rev. B 55, 16249 (1997)

    ADS  Article  Google Scholar 

  6. Y.P. Monarkha, K. Kono, Two-Dimensional Coulomb Liquids and Solids (Springer, Berlin, 2004)

  7. G.F. Giuliani, G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, Cambridge, 2005)

  8. J. Klier, I. Doicescu, P. Leiderer, J. Low Temp. Phys. 121, 603 (2000)

    ADS  Article  Google Scholar 

  9. P. Glasson, S.E. Andresen, G. Ensell, V. Dotsenko, W. Bailey, P. Fozooni, A. Kristensen, M.J. Lea, Physica B 284-288, 1916 (2000)

    ADS  Article  Google Scholar 

  10. H. Ikegami, H. Akimoto, K. Kono, Phys. Rev. B 82, 201104 (2010)

    ADS  Article  Google Scholar 

  11. H. Ikegami, H. Akimoto, D.G. Rees, K. Kono, Phys. Rev. Lett. 109, 236802 (2012)

    ADS  Article  Google Scholar 

  12. D.G. Rees, H. Ikegami, K. Kono, J. Phys. Soc. Jpn. 82, 124602 (2013)

    ADS  Article  Google Scholar 

  13. D.G. Rees, N.R. Beysengulov, J.J. Lin, K. Kono, Phys. Rev. Lett. 116, 206801 (2016)

    ADS  Article  Google Scholar 

  14. M.I. Dykman, Phys. 9, 54 (2016)

    Article  Google Scholar 

  15. D.G. Rees, S.S. Yeh, B.C. Lee, K. Kono, J.J. Lin, Phys. Rev. B 96, 205438 (2017)

    ADS  Article  Google Scholar 

  16. A.O. Badrutdinov, A.V. Smorodin, D.G. Rees, J.Y. Lin, D. Konstantinov, Phys. Rev. B 94, 195311 (2016)

    ADS  Article  Google Scholar 

  17. J.Y. Lin, A.V. Smorodin, A.O. Badrutdinov, D. Konstantinov, Phys. Rev. B 98, 085412 (2018)

    ADS  Article  Google Scholar 

  18. J.Y. Lin, A.V. Smorodin, A.O. Badrutdinov, D. Konstantinov, J. Low Temp. Phys. 195, 289 (2019)

    ADS  Article  Google Scholar 

  19. Y.P. Monarkha, Europ. Phys. Lett. 118, 67001 (2017)

    ADS  Article  Google Scholar 

  20. Y.P. Monarkha, K. Kono, J. Phys. Soc. Jpn. 74, 960 (2005)

    ADS  Article  Google Scholar 

  21. W.F. Vinen, J. Phys.: Condens. Matter 11, 9709 (1999)

    ADS  Google Scholar 

  22. M.I. Dykman, Y.G. Rubo, Phys. Rev. Lett. 78, 4813 (1997)

    ADS  Article  Google Scholar 

  23. H.J. Lauter, H. Godfrin, V.L.P. Frank, P. Leiderer, Phys. Rev. Lett. 68, 2484 (1992)

    ADS  Article  Google Scholar 

  24. D.G. Rees, I. Kuroda, C.A. Marrache-Kikuchi, M. Hoefer, P. Leiderer, K. Kono, Phys. Rev. Lett. 106, 026803 (2011)

    ADS  Article  Google Scholar 

  25. W. Quapp, J.M. Bofill, Molec. Phys. 117, 1541 (2019)

    ADS  Article  Google Scholar 

  26. W. Quapp, J.M. Bofill, European Phys. J. B 92, 95 (2019)

    ADS  Article  Google Scholar 

  27. W. Quapp, J.M. Bofill, European Phys. J. B 92, 193 (2019)

    ADS  Article  Google Scholar 

  28. H.J. Schulz, J. Phys. C 16, 6769 (1983)

    ADS  Article  Google Scholar 

  29. W. Quapp, J.M. Bofill, Theoret. Chem. Acc. 135, 113 (2016)

    Article  Google Scholar 

  30. W. Quapp, J.M. Bofill, J. Ribas-Ariño, Int. J. Quant. Chem. 118, e25775 (2018)

    Article  Google Scholar 

  31. J.M. Bofill, J. Ribas-Ariño, S.P. García, W. Quapp, J. Chem. Phys. 147, 152710 (2017)

    ADS  Article  Google Scholar 

  32. W. Quapp, J.M. Bofill, Int. J. Quant. Chem. 118, e25522 (2018)

    Article  Google Scholar 

  33. D.A. Gangloff, A. Bylinskii, V. Vuletić, Phys. Rev. Research 2, 013380 (2020)

    ADS  Article  Google Scholar 

  34. K.M. Yunusova, D. Konstantinov, H. Bouchiat, A.D. Chepelianskii, Phys. Rev. Lett. B 94, 195311 (2016)

    Article  Google Scholar 

  35. O.V. Zhirov, J. Lages, D.L. Shepelyansky, Euro. Phys. J. D 73, 149 (2019)

    ADS  Article  Google Scholar 

  36. M.Y. Zakharov, D. Demidov, D.L. Shepelyansky, arXiv:1901.05231 (2019)

  37. V.Y. Sivokon, Low Temp. Phys. 45, 58 (2019)

    ADS  Article  Google Scholar 

  38. H. Ikegami, H. Akimoto, K. Kono, J. Phys. Conf. Series 400, 012020 (2012)

    Article  Google Scholar 

  39. K. Shirahama, K. Kono, Phys. Rev. Lett. 74, 781 (1995)

    ADS  Article  Google Scholar 

  40. H. Ikegami, H. Akimoto, K. Kono, Phys. Rev. Lett. 102, 046807 (2009)

    ADS  Article  Google Scholar 

  41. K. Shirahama, K. Kono, J. Low Temp. Phys. 104, 237 (1996)

    ADS  Article  Google Scholar 

  42. Y.P. Monarkha, K. Kono, Low Temp. Phys. 35, 356 (2009)

    ADS  Article  Google Scholar 

  43. O.M. Braun, B. Hu, A. Zeltser, Phys. Rev. E 62, 4235 (2000)

    ADS  Article  Google Scholar 

  44. I.D. Mikheikin, M.Y. Kuznetsov, E.V. Makhonina, V.S. Pervov, J. Mater. Synth. Process. 10, 53 (2002)

    Article  Google Scholar 

  45. O.M. Braun, Y.S. Kivshar, M. Peyrard, Phys. Rev. E 56, 6050 (1997)

    ADS  MathSciNet  Article  Google Scholar 

  46. J.I. Frenkel, Wave Mechanics. Elementary Theory (Clarendon Press, Oxford, 1932)

  47. M. Peyrard, M.D. Kruskal, Physica D 14, 88 (1984)

    ADS  MathSciNet  Article  Google Scholar 

  48. C. Yannouleas, U. Landman, Rep. Progr. Phys. 70, 2067 (2007)

    ADS  Article  Google Scholar 

  49. J. Odavić, P. Malik, J. Tekić, M. Pantić, M. Pavkov-Hrvojević, Commun. Nonlinear Sci. Numer. Simulat. 47, 100 (2017)

    ADS  Article  Google Scholar 

  50. J. Tekić, D. He, B. Hu, Phys. Rev. E 79, 036604 (2009)

    ADS  Article  Google Scholar 

  51. S.V. Dmitriev, L.V. Nauman, A.M. Wusatowska-Sarnek, M.D. Starostenkov, Phys. Stat. Sol. B 201, 89 (1997)

    ADS  Article  Google Scholar 

  52. M. Hirsch, W. Quapp, THEOCHEM 683, 1 (2004)

    Article  Google Scholar 

  53. G.A. Csáthy, D.C. Tsui, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett. 98, 066805 (2007)

    ADS  Article  Google Scholar 

  54. J. Tekić, A.E. Botha, P. Mali, Y.M. Shukrinov, Phys. Rev. E 99, 022206 (2019)

    ADS  Article  Google Scholar 

  55. M. Hirsch, W. Quapp, Chem. Phys. Lett. 395, 150 (2004)

    ADS  Article  Google Scholar 

  56. A.B. Kolton, A. Rosso, T. Giamarchi, W. Krauth, Phys. Rev. Lett. 97, 057001 (2006)

    ADS  Article  Google Scholar 

  57. S. Aubry, Physica 7D, 240 (1983)

    ADS  Google Scholar 

  58. D. Heidrich, W. Quapp, Theor. Chim. Acta 70, 89 (1986)

    Article  Google Scholar 

  59. Y.P. Monarkha, V.E. Syvokon, Low Temp. Phys. 38, 1067 (2012)

    ADS  Article  Google Scholar 

  60. P. Tong, B. Li, B. Hu, Phys. Rev. Lett. 88, 046804 (2002)

    ADS  Article  Google Scholar 

  61. P.L. Christiansen, A.V. Savin, A.V. Zolotaryuk, Phys. Rev. B 54, 12892 (1996)

    ADS  Article  Google Scholar 

  62. A.D. Klironomos, J.S. Meyer, K.A. Matveev, Europhys. Lett. 74, 679 (2006)

    ADS  Article  Google Scholar 

  63. V.E. Syvokon, S.S. Sokolov, Low Temp. Phys. 41, 858 (2015)

    ADS  Article  Google Scholar 

  64. J.B. Okaly, F. II Ndzana, R.L. Woulaché, T.C. Kofané, Eur. Phys. J. Plus 134, 598 (2019)

    Article  Google Scholar 

  65. H.J. Schulz, Phys. Rev. Lett. 71, 1864 (1993)

    ADS  Article  Google Scholar 

  66. G. Grüner, Rev. Mod. Phys. 60, 1129 (1988)

    ADS  Article  Google Scholar 

  67. R. Thorne, Phys. Today 1996, 42 (1996)

    Article  Google Scholar 

  68. J.P. Pouget, C. R. Physique 17, 332 (2016)

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Quapp.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Quapp, W., Lin, JY. & Bofill, J.M. The movement of a one-dimensional Wigner solid explained by a modified Frenkel-Kontorova model. Eur. Phys. J. B 93, 227 (2020). https://doi.org/10.1140/epjb/e2020-10421-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10421-x

Keywords

  • Computational Methods