Skip to main content
Log in

Metal-insulator transition and band magnetism in the spin-1∕2 Falicov-Kimball model on a triangular lattice with external magnetic field

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Ground state properties of the spin − 1∕2 Falicov-Kimball model on a triangular lattice in the presence of uniform external magnetic field are explored. Both the orbital and the Zeeman field-induced effects are taken into account and in each unit cell only rational flux fractions are considered. Numerical results, obtained with the help of Monte Carlo simulation algorithm, reveal that the ground state properties strongly depend on the onsite Coulomb correlation between itinerant and localized electrons, orbital magnetic field as well as the Zeeman splitting. Strikingly, for the on-site Coulomb correlation Ut ≈ 1, the Zeeman splitting produces a phase transition from paramagnetic metal/insulator to ferromagnetic insulator/metal transition in the itinerant electron subsystem accompanied by the phase segregation to the regular/quasi-regular phase in the localized electrons subsystem. For the onsite Coulomb correlation Ut ≈ 5, although no metal to insulator transition is observed but a magnetic phase transition from paramagnetic phase to ferromagnetic phase in the itinerant electron subsystem is observed with the Zeeman splitting. These results are applicable to the layered systems e.g. cobaltates, rare earth and transition metal dichalcogenides, GdI2, NaTiO2, NaV O2 and BexZn1−xO etc. It has been also proposed that the results can be realized in the optical lattices with mixtures of light atoms and heavy atoms using the ultra-cold atomic techniques.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.v. Klitzing, G. Dorda, M. Pepper, Phys. Rev. Lett. 45, 494 (1980)

    Article  ADS  Google Scholar 

  2. D.J. Thouless, Phys. Rev. B 27, 6083 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  3. D.R. Hofstadter, Phys. Rev. B 14, 2239 (1976)

    Article  ADS  Google Scholar 

  4. P. Lederer, D. Poilblanc, T.M. Rice, Phys. Rev. Lett. 63, 1519 (1989)

    Article  ADS  Google Scholar 

  5. M.M. Maśka, Phys. Rev. B 66, 054533 (2002)

    Article  ADS  Google Scholar 

  6. C. Albrecht, J.H. Smet, K. von Klitzing, D. Weiss, V. Umansky, H. Schweizer, Phys. Rev. Lett. 86, 147 (2001)

    Article  ADS  Google Scholar 

  7. S. Pradhan, J. Phys. Condens. Matter 28, 505502 (2016)

    Article  Google Scholar 

  8. S.K. Ghosh, U.K. Yadav, V.B. Shenoy, Phys. Rev. A (R) 92, 051602 (2015)

    Article  ADS  Google Scholar 

  9. S.K. Ghosh, U.K. Yadav, Phys. Rev. A 94, 043634 (2016)

    Article  ADS  Google Scholar 

  10. S.K. Ghosh, S. Greschner, U.K. Yadav, T. Mishra, M. Rizzi, V.B. Shenoy, Phys. Rev. A 95, 063612 (2017)

    Article  ADS  Google Scholar 

  11. U.K. Yadav, Solid State Commun. 249, 12 (2017)

    Article  ADS  Google Scholar 

  12. D. Qian, D. Hsieh, L. Wray, Y.D. Chuang, A. Fedorov, D. Wu, J.L. Luo, N.L. Wang, L. Viciu, R.J. Cava et al., Phys. Rev. Lett. 96, 216405 (2006)

    Article  ADS  Google Scholar 

  13. I. Terasaki, Y. Sasago, K. Uchinokura, Phys. Rev. B 56, R12685 (1997)

    Article  ADS  Google Scholar 

  14. K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R.A. Dilanian, T. Sasaki, Nature 422, 53 (2003)

    Article  ADS  Google Scholar 

  15. A. Taraphder, M.S. Laad, L. Craco, A.N. Yaresko, Phys. Rev. Lett. 101, 136410 (2008)

    Article  ADS  Google Scholar 

  16. T. Maitra, A. Taraphder, A.N. Yaresko, P. Fulde, Eur. Phys. J. B 49, 433 (2006)

    Article  ADS  Google Scholar 

  17. S.J. Clarke, A.J. Fowkes, A. Harrison, R.M. Ibberson, M.J. Rosseinsky, Chem. Mater. 10, 372 (1998)

    Article  Google Scholar 

  18. H.F. Pen, J. van den Brink, D.I. Khomskii, G.A. Sawatzky, Phys. Rev. Lett. 78, 1323 (1997)

    Article  ADS  Google Scholar 

  19. D.I. Khomskii, T. Mizokawa, Phys. Rev. Lett. 94, 156402 (2005)

    Article  ADS  Google Scholar 

  20. R. Kaur, T. Maitra, T. Nautiyal, J. Phys.: Condens. Matter 25, 065503 (2013)

    ADS  Google Scholar 

  21. H.A. Mook, P. Dai, F. Doğan, Phys. Rev. Lett. 88, 097004 (2002)

    Article  ADS  Google Scholar 

  22. R. Lemański, J.K. Freericks, G. Banach, Phys. Rev. Lett. 89, 196403 (2002)

    Article  ADS  Google Scholar 

  23. U.K. Yadav, T. Maitra, I. Singh, A. Taraphder, J. Phys.: Condens. Matter 22, 295602 (2010)

    Google Scholar 

  24. U.K. Yadav, T. Maitra, I. Singh, A. Taraphder, EPL (Europhysics Letters) 93, 47013 (2011)

    Article  ADS  Google Scholar 

  25. U.K. Yadav, T. Maitra, I. Singh, Eur. Phys. J. B 84, 365 (2011)

    Article  ADS  Google Scholar 

  26. U.K. Yadav, T. Maitra, I. Singh, Solid State Commun. 164, 32 (2013)

    Article  ADS  Google Scholar 

  27. S. Kumar, U.K. Yadav, T. Maitra, I. Singh, Solid State Commun. 228, 1 (2016)

    Article  ADS  Google Scholar 

  28. L.M. Falicov, J.C. Kimball, Phys. Rev. Lett. 22, 997 (1969)

    Article  ADS  Google Scholar 

  29. R. Ramirez, L.M. Falicov, J.C. Kimball, Phys. Rev. B 2, 3383 (1970)

    Article  ADS  Google Scholar 

  30. R. Lema ński, Phys. Rev. B 71, 035107 (2005)

    Article  ADS  Google Scholar 

  31. H. Cencariková, P. Farkasovsky, N. Tomasovicova, M. Zonda, Phys. Status Solidi 245, 2593 (2008)

    Article  Google Scholar 

  32. S. Pradhan, A. Taraphder, EPL 116, 57001 (2016)

    Article  ADS  Google Scholar 

  33. C. Gruber, N. Macris, A. Messager, D. Ueltschi, J. Stat. Phys. 86, 57 (1997)

    Article  ADS  Google Scholar 

  34. M. Wrobel, M. Mierzejewski, M. Maska, Acta Phys. Pol. A 118, 379 (2010)

    Article  ADS  Google Scholar 

  35. D.S. Park, J.J. Mudd, M. Walker, A. Krupski, D. Seghier, N.F. Saniee, C.J. Choi, C.J. Youn, S.R.C. McMitchell, C.F. McConville, Cryst. Eng. Comm 16, 2136 (2014)

    Article  Google Scholar 

  36. D. Yong, H. He, L. Su, Y. Zhu, Z. Tang, X.C. Zeng, B. Pan, Nanoscale 7, 9852 (2015)

    Article  ADS  Google Scholar 

  37. J.K. Freericks, V. Zlati ć, Phys. Rev. B 58, 322 (1998)

    Article  ADS  Google Scholar 

  38. M. Zonda, Mod. Phys. Lett. B 21, 467 (2007)

    Article  ADS  Google Scholar 

  39. L. Cornelissen, J. Liu, R. Duine, J.B. Youssef, B. Van Wees, Nat. Phys. 11, 1022 (2015)

    Article  Google Scholar 

  40. S. Kumar, U.K. Yadav, T. Maitra, I. Singh, Solid State Commun. 189, 21 (2014)

    Article  ADS  Google Scholar 

  41. R. Peierls, Z für Phys. 80, 763 (1933)

    Article  ADS  Google Scholar 

  42. Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  43. M. Aidelsburger,Artificial gauge fields with ultracold atoms in optical lattices (Springer, 2016)

  44. R.S. Khymyn, V.E. Kireev, B.O. Ivanov, Condens. Matter Phys. 17, 33701 (2014)

    Article  Google Scholar 

  45. R.S. Gekht, Sov. Phys. Usp 32, 871 (1989)

    Article  ADS  Google Scholar 

  46. G. Li, P. Höpfner, J. Schäfer, C. Blumenstein, S. Meyer, A. Bostwick, E. Rotenberg, R. Claessen, W. Hanke, Nat. Commun. 4, 1620 (2013)

    Article  ADS  Google Scholar 

  47. H. Ishizuka,Magnetism and Transport Phenomena in Spin-Charge Coupled Systems on Frustrated Lattices (Springer, 2015)

  48. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  49. C. Ates, K. Ziegler, Phys. Rev. A 71, 063610 (2005)

    Article  ADS  Google Scholar 

  50. L. Tomio, S. Adhikari, G. Krein, K. Ziegler, Nucl. Phys. A 790, 718c (2007)

    Article  Google Scholar 

  51. M. Iskin, J.K. Freericks, Phys. Rev. A 80, 053623 (2009)

    Article  ADS  Google Scholar 

  52. D.P.A. Maurice, Proc. R. Soc. Lond. A 133, 60 (1931)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umesh K. Yadav.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, U.K. Metal-insulator transition and band magnetism in the spin-1∕2 Falicov-Kimball model on a triangular lattice with external magnetic field. Eur. Phys. J. B 93, 221 (2020). https://doi.org/10.1140/epjb/e2020-10372-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10372-2

Keywords

Navigation