Skip to main content
Log in

Brownian thermal control device

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Here, we design a Brownian thermal control device with microscale, which consists of two compartments modeled by two spatially periodic potentials, respectively. Through calculating its thermal current, it is found that the device can play roles of both thermal diode and thermal on–off, depending on its symmetry and amplitudes and spatial frequencies of the periodic potentials. In the case of optimal amplitudes and spatial frequencies, a negative differential thermal resistance effect also appears in the system, by means of which a Brownian thermal transistor can be developed. These findings have an important significance for understanding operating mechanisms through which some nano-scale machines and organisms usually work under environments of constant temperatures.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Maldovan, Nature 503, 209 (2013)

    Article  ADS  Google Scholar 

  2. M.V. Smoluchowski, Phys. Z. 13, 1069 (1912)

    Google Scholar 

  3. T. Salger, S. Kling, T. Hecking, C. Geckeler, L. Morales-Molina, M. Weitz, Science 326, 1241 (2009)

    Article  ADS  Google Scholar 

  4. I. Goychuk, V. Kharchenko, Phys. Rev. E 85, 051131 (2012)

    Article  ADS  Google Scholar 

  5. P. Hänggi, F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009)

    Article  ADS  Google Scholar 

  6. X.X. Sun, L.R. Nie, P. Li, Europhys. Lett. 95, 50003 (2011)

    Article  ADS  Google Scholar 

  7. B. Lisowski, D. Valenti, B. Spagnolo, M. Bier, E. Gudowska-Nowak, Phys. Rev. E 91, 042713 (2015)

    Article  ADS  Google Scholar 

  8. D. Vorotnikov, J. Math. Biol. 68, 1677 (2014)

    Article  MathSciNet  Google Scholar 

  9. I.A. Martinez, E. Roldan, L. Dinis, D. Petrov, J.M.R. Parrondo, R.A. Rica, Nat. Phys. 12, 67 (2016)

    Article  Google Scholar 

  10. G. Falci, A. La Cognata, M. Berritta, A.D. Arrigo, E. Paladino, B. Spagnolo, Phys. Rev. B 87, 214515 (2013)

    Article  ADS  Google Scholar 

  11. H. Lodish et al.,Molecular Cell Biology (Freeman, New York, 2000)

  12. D. Guo, C. Li, D.C. Mei, Physica A 525, 1192 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  13. A. Parmeggiani, F. Jülicher, A. Ajdari, J. Prost, Phys. Rev. E 60, 2127 (1999)

    Article  ADS  Google Scholar 

  14. H.X. Zhou, Y.D. Chen, Phys. Rev. Lett. 77, 194 (1996)

    Article  ADS  Google Scholar 

  15. D. Valenti, L. Magazzu, P. Caldara, B. Spagnolo, Phys. Rev. B 91, 235412 (2015)

    Article  ADS  Google Scholar 

  16. Z.C. Tu, X. Hu, Phys. Rev. B 72, 033404 (2005)

    Article  ADS  Google Scholar 

  17. E.R. Kay, D.A. Leigh, F. Zerbetto, Angew. Chem. Int. Ed. 46, 72 (2007)

    Article  Google Scholar 

  18. M. Schreier, P. Reimann, P. Hänggi, E. Pollak, Europhys. Lett. 44, 416 (1998)

    Article  ADS  Google Scholar 

  19. A.A. Dubkov, B. Spagnolo, Eur. Phys. J. B 65, 361 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  20. U. Seifert, Rep. Prog. Phys. 75, 126001 (2012)

    Article  ADS  Google Scholar 

  21. C.Y. Chen, R.Y. Chen, L.R. Nie, C.J. Wang, Y.J. Jia, Physica A 491, 399 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  22. L.L. Yu, R.Y. Chen, L.R. Nie, Eur. Phys. J. B 88, 1 (2015)

    Article  ADS  Google Scholar 

  23. L.J. Yang, F. Lv, D.C. Mei, Physica A 432, 331 (2015)

    Article  ADS  Google Scholar 

  24. R.Y. Chen, C.J. Wang, Z.F. He, Chaos, Solitons Fractals 126, 116 (2019)

    Article  ADS  Google Scholar 

  25. R.Y. Chen, X.N. Lv, Physica A 514, 336 (2019)

    Article  ADS  Google Scholar 

  26. B.Q. Ai, Y.F. He, W.R. Zhong, Phys. Rev. E 82, 061102 (2010)

    Article  ADS  Google Scholar 

  27. J. Ren, B. Li, Phys. Rev. E 81, 021111 (2010)

    Article  ADS  Google Scholar 

  28. N. Li, F. Zhan, P. Hänggi, B. Li, Phys. Rev. E 80, 011125 (2009)

    Article  ADS  Google Scholar 

  29. A. Fiasconaro, B. Spagnolo, Phys. Rev. E 83, 041122 (2011)

    Article  ADS  Google Scholar 

  30. B. Spagnolo, D. Valenti, C. Guarcello, A. Carollo, D.P. Adorno, S. Spezia, N. Pizzolato, B. Di Paola, Chaos Soliton Fractals 81, 412 (2015)

    Article  ADS  Google Scholar 

  31. B. Spagnolo, C. Guarcello, L. Magazzu, A. Carollo, D.P. Adorno, D. Valenti, Entropy 19, 20 (2017)

    Article  ADS  Google Scholar 

  32. A.A. Dubkov, B. Spagnolo, Phys. Rev. E 72, 041104 (2005)

    Google Scholar 

  33. L.R. Nie, L.L. Yu, Z.G. Zhang, C.Z. Shu, Phys. Rev. E 87, 062142 (2013)

    Article  ADS  Google Scholar 

  34. J.Q. Zhang, L.R. Nie, X.Y. Zhang, R.Y. Chen, Eur. Phys. J. B 87, 285 (2014)

    Article  ADS  Google Scholar 

  35. L.L. Yu, L. Bai, L.R. Nie, X.H. Wang, Eur. Phys. J. B 86, 351 (2013)

    Article  ADS  Google Scholar 

  36. B. Li, L. Wang, G. Casati, Phys. Rev. Lett. 93, 184301 (2004)

    Article  ADS  Google Scholar 

  37. S. Komatsu Teruhisa, Ito. Nobuyasu, Phys. Rev. E 81, 010103(R) (2010)

    Article  ADS  Google Scholar 

  38. B. Li, L. Wang, G. Casati, Appl. Phys. Lett. 88, 143501 (2006)

    Article  ADS  Google Scholar 

  39. T. Ojanen, A.P. Jauho, Phys. Rev. Lett. 100, 155902 (2008)

    Article  ADS  Google Scholar 

  40. J.Q. Zhang, L.R. Nie, C.Y. Chen, X.Y. Zhang, AIP Adv. 6, 075212 (2016)

    Article  Google Scholar 

  41. H. Zhao, Z.L. Shi, L.R. Nie, Eur. Phys. J. B 93, 56 (2020)

    Article  ADS  Google Scholar 

  42. A. Gomez-Marin, J.M. Sancho, Phys. Rev. E 71, 021101 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linru Nie.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Nie, L. Brownian thermal control device. Eur. Phys. J. B 93, 206 (2020). https://doi.org/10.1140/epjb/e2020-10341-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10341-9

Keywords

Navigation