Skip to main content
Log in

Electronic properties of slid bilayer graphene: effective models in low energy range

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A generic tight-binding model for 2pz electrons in bilayer graphene (BLG) systems is used to derive the expression of effective Hamiltonians for low-energy states around the K-points of hexagonal Brillouin zone. The obtained effective Hamiltonians are validated for two kinds of AA-like and AB-like slid bilayer graphene (SBG). It is shown that, for the former case, the electronic structure is characterized by a gauge vector field which couples to the sliding vector to deform the band structure of the AA-stacked configuration as a perturbation. For the latter case, since the A–B interlayer coupling is the most dominant, it allows separating the energy bands and lowering the 4 × 4 Hamiltonian into a 2 × 2 effective model. A gauge vector field also appears, but different from the AA-like SBGs, it plays the role similar to an in-plane magnetic field.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. McCann, M. Koshino, Rep. Prog. Phys. 76, 056503 (2013)

    Article  ADS  Google Scholar 

  2. A.K. Geim, I.V. Grigorieva, Nature 499, 419 (2013)

    Article  Google Scholar 

  3. K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto, Science 353, 461 (2016)

    Article  Google Scholar 

  4. W. Zhang, Q. Wang, Y. Chen, Z. Wang, A.T.S. Wee, 2D Mater. 3, 022001 (2016)

    Article  Google Scholar 

  5. Y. Liu, N.O. Weiss, X. Duan, H.-C. Cheng, Y. Huang, X. Duan, Nat. Rev. Mater. 1, 16042 (2016)

    Article  ADS  Google Scholar 

  6. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Nano Lett. 9, 30 (2009)

    Article  ADS  Google Scholar 

  7. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006)

    Article  ADS  Google Scholar 

  8. W. Norimatsu, M. Kusunoki, Phys. Rev. B 81, 161410(R) (2010)

    Article  ADS  Google Scholar 

  9. Z. Liu, K. Suenaga, P.J.F. Harris, S. Iijima, Phys. Rev. Lett. 102, 015501 (2009)

    Article  ADS  Google Scholar 

  10. V. Nam Do, H. Anh Le, V. Thieu Vu, Phys. Rev. B 95, 165130 (2017)

    Article  Google Scholar 

  11. A.V. Rozhkov, A.O. Sboychakov, A.L. Rakhmanov, F. Nori, Phys. Rep. 648, 1 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  12. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  13. P.R. Wallace, Phys. Rev. 71, 622 (1947)

    Article  ADS  Google Scholar 

  14. B. Partoens, F.M. Peeters, Phys. Rev. B 74, 075404 (2006)

    Article  ADS  Google Scholar 

  15. B. Van Duppen, F.M. Peeters, Phys. Rev. B 87, 205427 (2013)

    Article  ADS  Google Scholar 

  16. J.H. Ho, C.L. Lu, C.C. Hwang, C.P. Chang, M.F. Lin, Phys. Rev. B 74, 085406 (2006)

    Article  ADS  Google Scholar 

  17. D.S.L. Abergel, V.I. Falko, Phys. Rev. B 75, 155430 (2007)

    Article  ADS  Google Scholar 

  18. E.J. Nicol, J.P. Carbotte, Phys. Rev. B 77, 155409 (2008)

    Article  ADS  Google Scholar 

  19. Y. Wang, Z. Ni, L. Liu, Y. Liu, C. Cong, T. Yu, X. Wang, D. Shen, Z. Shen, ACS Nano 4, 4074 (2010)

    Article  Google Scholar 

  20. C.J. Tabert, E.J. Nicol, Phys. Rev. B 86, 075439 (2012)

    Article  ADS  Google Scholar 

  21. J.Y. Wu, G. Gumbs, M.F. Lin, Phys. Rev. B 89, 165407 (2014)

    Article  ADS  Google Scholar 

  22. E. McCann, Phys. Rev. B 74, 161403(R) (2006)

    Article  ADS  Google Scholar 

  23. E.J. Mele, Phys. Rev. B 81, 161405 (2010)

    Article  ADS  Google Scholar 

  24. W. Fang, A.L. Hsu, Y. Song, J. Kong, Nanoscale 7, 20335 (2015)

    Article  ADS  Google Scholar 

  25. Y.W. Son, S.M. Choi, Y.P. Hong, S. Woo, S.H. Jhi, Phys. Rev. B 84, 155410 (2011)

    Article  ADS  Google Scholar 

  26. S. Shallcross, S. Sharma, O. Pankratov, Phys. Rev. B 87, 245403 (2013)

    Article  ADS  Google Scholar 

  27. T.N. Do, C.C. Chang, P.H. Shih, J.Y. Wu, M.F. Lin, Phys. Chem. Chem. Phys. 19, 29525 (2017)

    Article  Google Scholar 

  28. J. Kang, O. Vafek, Phys. Rev. X 8, 031088 (2018)

    Google Scholar 

  29. R. Bistritzer, A.H. MacDonald, Proc. Natl. Acad. Sci. U.S.A. 108, 12233 (2011)

    Article  ADS  Google Scholar 

  30. Y. Cao, V. Fatemi, S. Fang, K. Watanable, T. Taniguchi, E. Kaxiras, P. Jarillo-Herrero, Nature 556, 43 (2018)

    Article  ADS  Google Scholar 

  31. Y. Cao, V. Fatemi, A. Demir, S. Fang, S.L. Tomarken, J.Y. Luo, J.D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R.C. Ashoori, P. Jarillo-Herrero, Nature 556, 80 (2018)

    Article  ADS  Google Scholar 

  32. H.A. Le, V.N. Do, Phys. Rev. B 97, 125136 (2018)

    Article  ADS  Google Scholar 

  33. V.N. Do, H.A. Le, D. Bercioux, Phys. Rev. B 99, 165127 (2019)

    Article  ADS  Google Scholar 

  34. B. Huang, C. Chuu, M. Lin, Sci. Rep. 9, 859 (2019)

    Article  ADS  Google Scholar 

  35. Y.K. Huang, S.C. Chen, Y.H. Ho, C.Y. Lin, M.F. Lin, Sci. Rep. 4, 7509 (2015)

    Article  Google Scholar 

  36. G. Li, A. Luican, J.M.B. Lopes dos Santos, A.H. Castro Neto, A. Reina, J. Kong, E.Y. Andrei, Nat. Phys. 6, 109 (2009)

    Article  Google Scholar 

  37. S. Shallcross, S. Sharma, O.A. Pankratov, Phys. Rev. Lett. 101, 056803 (2008)

    Article  ADS  Google Scholar 

  38. A.B. Kuzmenko, I. Crassee, D. van der Marel, P. Blake, K.S. Novoselov, Phys. Rev. B 80, 165406 (2009)

    Article  ADS  Google Scholar 

  39. D.S.L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, T. Chakraborty, Adv. Phys. 59, 261 (2010)

    Article  ADS  Google Scholar 

  40. E. McCann, V.L. Fal’ko, Phys. Rev. Lett. 96, 086805 (2006)

    Article  ADS  Google Scholar 

  41. J.C. Slater, G.F. Koster, Phys. Rev. 94, 1498 (1954)

    Article  ADS  Google Scholar 

  42. P. Moon, M. Koshino, Phys. Rev. B 85, 195458 (2012)

    Article  ADS  Google Scholar 

  43. P. Moon, M. Koshino, Phys. Rev. B 87, 205404 (2013)

    Article  ADS  Google Scholar 

  44. M. Koshino, New J. Phys. 17, 015014 (2015)

    Article  ADS  Google Scholar 

  45. G. Dresselhaus, Phys. Rev. B 10, 3602 (1974)

    Article  ADS  Google Scholar 

  46. M.S. Dresselhaus, G. Dresselhaus, Adv. Phys. 51, 1 (2002)

    Article  ADS  Google Scholar 

  47. K. Kechedzhi, V.I. Fal’ko, E. McCann, B.L. Altshuler, Phys. Rev. Lett. 98, 176806 (2007)

    Article  ADS  Google Scholar 

  48. M. Mucha-Kruczynski, D.S.L. Abergel, E. McCann, V.I. Fal’ko, J. Phys.: Condens. Matter 21, 344206 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sy-Ta Ho or Van-Nam Do.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, ST., Le, H.A., Nguyen, V.D. et al. Electronic properties of slid bilayer graphene: effective models in low energy range. Eur. Phys. J. B 93, 190 (2020). https://doi.org/10.1140/epjb/e2020-10328-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10328-6

Keywords

Navigation