Skip to main content

Dynamic recombination of triplet exciton with trapped counterion in conjugated polymers


The dynamic recombination of an on-chain triplet exciton with an off-chain counterion trapped in an impurity molecule has been investigated using a molecular dynamics method. It has been found that luminous composite states including the trion and the singlet exciton are the main products in the triplet exciton-counterion reaction and their yields depend sensitively on the impurity potential and the coupling between the polymer chain and the impurity molecule. We demonstrate that the triplet exciton-counterion reaction can enhance the electroluminescence efficiency considerably, and that the triplet exciton plays an important role in the photoelectric process of polymer. Our results provide a new clue to understand the electroluminescence mechanism in the polymer light-emitting devices.

Graphical abstract

This is a preview of subscription content, access via your institution.


  1. 1.

    M.S. White, M. Kaltenbrunner, E.D. Glowacki, K. Gutnichenko, G. Kettlgruber, I. Graz, S. Aazou, C. Ulbricht, D.A.M. Egbe, M.C. Miron, Z. Major, M.C. Scharber, T. Sekitani, T. Some, S. Bauer, N.S. Sariciftci, Nat. Photonics 7, 811 (2013)

    ADS  Article  Google Scholar 

  2. 2.

    H. Zheng, Y. Zheng, N. Liu, N. Ai, Q. Wang, S. Wu, J. Zhou, D. Hu, S. Yu, S. Han, W. Xu, C. Luo, Y. Meng, Z. Jiang, Y. Chen, D. Li, F. Huang, J. Wang, J. Peng, Y. Cao, Nat. Commun. 4, 1971 (2012)

    ADS  Article  Google Scholar 

  3. 3.

    S.A. Brazovskii, N.N. Kirova, Sov. Phys. JETP Lett. 33, 4 (1981)

    ADS  Google Scholar 

  4. 4.

    J.S. Wilson, A.S. Dhoot, A.J. Seeley, M.S. Khan, A. Köhler, R.H. Friend, Nature 413, 828 (2001)

    ADS  Article  Google Scholar 

  5. 5.

    M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, Z.V. Vardeny, Nature 409, 494 (2001)

    ADS  Article  Google Scholar 

  6. 6.

    Y. Cao, I.D. Parker, G. Yu, C. Zhang, A.J. Heeger, Nature 397, 414 (1999)

    ADS  Article  Google Scholar 

  7. 7.

    G. Li, C.H. Kim, P.A. Lane, J. Shinar, Phys. Rev. B 69, 1124 (2004)

    Google Scholar 

  8. 8.

    B. Di, Y. Meng, Y.D. Wang, X.J. Liu, Z. An, J. Chem. Phys. B 115, 964 (2011)

    Article  Google Scholar 

  9. 9.

    Z. Sun, Y. Li, K. Gao, D.S. Liu, Z. An, S.J. Xie, Org. Electron. 11, 279 (2010)

    Article  Google Scholar 

  10. 10.

    L. Ge, S. Li, T.F. George, Phys. Lett. A. 372, 3375 (2008)

    ADS  Article  Google Scholar 

  11. 11.

    H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 492, 234 (2012)

    ADS  Article  Google Scholar 

  12. 12.

    A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, C. Adachi, Appl. Phys. Lett. 98, 083302 (2011)

    ADS  Article  Google Scholar 

  13. 13.

    D.Y. Kondakov, T.D. Pawlik, T.K. Hatwar, J.P. Spindler, J. Appl. Phys. 106, 124510 (2009)

    ADS  Article  Google Scholar 

  14. 14.

    Y. Cao, G. Yu, A.J. Heeger, Adv. Mater. 10, 917 (1999)

    Article  Google Scholar 

  15. 15.

    C.H. Yang, Q.J. Sun, J. Qiao, Y.F. Li, J. Phys. Chem. B 107, 12981 (2003)

    Article  Google Scholar 

  16. 16.

    Q. Lu, H. Zhao, Y.G. Chen, Y.H. Yan, Physica B 421, 13 (2013)

    ADS  Article  Google Scholar 

  17. 17.

    L.A. Ribeiro Jr., W.F. da Cunha, P.H. de Oliveira Neto, R. Gargano, G.M.E. Silva, J. Chem. Phys. 139, 174903 (2013)

    ADS  Article  Google Scholar 

  18. 18.

    A. Kadashchuk, V.I. Arkhipov, C.H. Kim, J. Shinar, D.W. Lee, Y.R. Hong, J.I. Jin, P. Heremans, H. Ba̋ssler, Phys. Rev. B 76, 235205 (2007)

    ADS  Article  Google Scholar 

  19. 19.

    H. Li, Y.W. Zhang, S.L. Zhang, Z.J. Qiu, Org. Electron. 34, 124 (2016)

    Article  Google Scholar 

  20. 20.

    Y.D. Wang, X.G. Zhang, Y. Meng, B. Di, Y.L. Zhang, Z. An, Org. Electron. 49, 286 (2017)

    Article  Google Scholar 

  21. 21.

    Y.D. Wang, B. Di, Y. Meng, X.J. Liu, Z. An, Org. Electron. 13, 1178 (2012)

    Article  Google Scholar 

  22. 22.

    W.P. Su, J.R. Schrieffer, A.J. Heeger, Phys. Rev. B 22, 2099 (1980)

    ADS  Article  Google Scholar 

  23. 23.

    J. Hubbard, Proc. R. Soc. London A 276, 238 (1963)

    ADS  Article  Google Scholar 

  24. 24.

    X. Sun, R.L. Fu, K. Yonemitsu, K. Nasu, Phys. Rev. Lett. 84, 2830 (2000)

    ADS  Article  Google Scholar 

  25. 25.

    A.J. Heeger, S. Kivelson, J.R. Schrieffer, W.P. Su, Rev. Mod. Phys. 60, 781 (1988)

    ADS  Article  Google Scholar 

  26. 26.

    L.A. Ribeiro Jr., F.M. Fábio, B.G. Enders, A.L. de Almeida Fonseca, G.M.E. Silva, W.F. da Cunha, J. Phys. Chem. A 122, 3866 (2018)

    Article  Google Scholar 

  27. 27.

    R.W. Brankin, I. Gladwell, L.F. Shampine, RKSUITE: a suite of Runge-Kutta codes for the initial value problem for ODEs, Soft report 92-S1, Department of Mathematics, Southern Methodist University, Dallas, Texas, U.S.A, 1992, see

Download references

Author information



Corresponding authors

Correspondence to Yadong Wang or Yan Meng.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, J., Liu, Y. et al. Dynamic recombination of triplet exciton with trapped counterion in conjugated polymers. Eur. Phys. J. B 93, 173 (2020).

Download citation


  • Solid State and Materials