Skip to main content
Log in

Disentangling roots of ergodicity breakdown by spectral analyses

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The connection between ergodicity breaking for a forced system and its two-time velocity correlation function is demonstrated using the Khinchin theorem, where the particle dynamics is described by a generalized Langevin equation. Products of observables at a pair of time points are constructed that are correlated with their initial preparations. Three types of nonergodic behaviors are elucidated, specifically the velocity correlation function of the system either approaches a constant, oscillates with time around a non-vanishing constant or oscillates around zero-value at large times. The corresponding noise spectral densities behave as low-hindering and high-passing, band-passing as well as low-passing and high-hindering or simply band-hindering. When a harmonic potential is imposed on the system, the first situation can be transformed into ergodicity whereas the latter two types cannot. Furthermore, the application to the Debye Brownian oscillator as well as the verification of several famous models are discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Burov, R. Metzler, E. Barkai, Proc. Natl. Acad. Sci. U.S.A. 107, 13228 (2010)

    Article  ADS  Google Scholar 

  2. I.M. Sokolov, Soft Matter 8, 9043 (2012)

    Article  ADS  Google Scholar 

  3. A.I. Khinchin,Mathematical Foundations of Statistical Mechanics (Dover, New York, 1949)

  4. H.H. Lee, Phys. Rev. Lett. 98, 190601 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  5. E. Lutz, Phys. Rev. Lett. 93, 190602 (2004)

    Article  ADS  Google Scholar 

  6. A. Weron, M. Magdziarz, Phys. Rev. Lett. 105, 260603 (2010)

    Article  ADS  Google Scholar 

  7. E. Barkai, Y. Garini, R. Metzler, Phys. Today 65, 29 (2012)

    Article  Google Scholar 

  8. K.J. Schrenk, D. Frenkei, J. Chem. Phys. 143, 241103 (2015)

    Article  ADS  Google Scholar 

  9. R.L. Jack, Eur. Phys. J. B 93, 74 (2020)

    Article  ADS  Google Scholar 

  10. J.D. Bao, P. Hänggi, Y.Z. Zhuo, Phys. Rev. E 72, 061107 (2005)

    Article  ADS  Google Scholar 

  11. A. Dhar, W. Wagh, Europhys. Lett. 79, 60003 (2007)

    Article  ADS  Google Scholar 

  12. L.C. Lapas, R. Morgado, M.H. Vainstein, J.M. Rubi, F.A. Oliveira, Phys. Rev. Lett. 101, 230602 (2008)

    Article  ADS  Google Scholar 

  13. A.V. Plyukhin, Phys. Rev. E 83, 062102 (2011)

    Article  ADS  Google Scholar 

  14. F. Ishikawa, S. Todo, Phys. Rev. E 98, 062140 (2018)

    Article  ADS  Google Scholar 

  15. Q. Qiu, X.Y. Shi, J.D. Bao, Europhys. Lett. 128, 2005 (2019)

    Article  Google Scholar 

  16. S.A. Adelman, J. Chem. Phys. 64, 124 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  17. U. Weiss,Quantum Dissipative Systems, 3rd edn. (World Scientific, Singapore, 2008)

  18. R. Zwanzig, J. Stat. Phys. 9, 215 (1973)

    Article  ADS  Google Scholar 

  19. R. Kubo, M. Toda, N. Hashitsume,Statistical Physics II, Nonequilibrium Statistical Mechanics, 2nd edn. (Springer-Verlag, Berlin, 1991)

  20. G.W. Ford, J.T. Lewis, R.F. O’Connell, Phys. Rev. A 37, 4419 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  21. L. Ferrari, Chem. Phys. 523, 42 (2019)

    Article  Google Scholar 

  22. J.D. Bao, Phys. Rev. E 101, 0602111 (2020)

    Google Scholar 

  23. G.R. Kneller, J. Chem. Phys. 134, 224106 (2011)

    Article  ADS  Google Scholar 

  24. J.D. Bao, J. Stat. Phys. 168, 561 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  25. H.K. Shin, B. Choi, P. Talkner, E.K. Lee, J. Chem. Phys. 141, 214113 (2014)

    Article  ADS  Google Scholar 

  26. J. Kim, I. Sawada, Phys. Rev. E 61, 2172 (2000)

    Article  ADS  Google Scholar 

  27. R. Morgado, F.A. Oliveira, G.G. Batrouni, A. Hansen, Phys. Rev. Lett. 89, 100601 (2002)

    Article  ADS  Google Scholar 

  28. M.M. Millonas, C. Ray, Phys. Rev. Lett. 75, 1110 (1995)

    Article  ADS  Google Scholar 

  29. S. Burov, E. Barkai, Phys. Rev. Lett. 100, 070601 (2008)

    Article  ADS  Google Scholar 

  30. I.V.L. Costa, R. Morgado, M.V.B.T. Lima, F.A. Oliveira, Europhys. Lett. 63, 173 (2003)

    Article  ADS  Google Scholar 

  31. M.H. Vainstein, I.V.L. Costa, R. Morgado, F.A. Oliveira, Europhys. Lett. 73, 726 (2006)

    Article  ADS  Google Scholar 

  32. J.D. Bao, Y.Z. Zhuo, Phys. Rev. Lett. 91, 138104 (2003)

    Article  ADS  Google Scholar 

  33. J.D. Bao, Y.L. Song, Q. Ji, Y.Z. Zhuo, Phys. Rev. E 72, 011113 (2005)

    Article  ADS  Google Scholar 

  34. P. Siegle, I. Goychuk, P. Hänggi, Phys. Rev. Lett. 105, 1000602 (2010)

    Article  Google Scholar 

  35. P. Siegle, I. Goychuk, P. Talkner, P. Hänggi, Phys. Rev. E 81, 011136 (2010)

    Article  ADS  Google Scholar 

  36. W. Deng, E. Barkai, Phys. Rev. E 79, 011112 (2009)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Dong Bao.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, JD. Disentangling roots of ergodicity breakdown by spectral analyses. Eur. Phys. J. B 93, 184 (2020). https://doi.org/10.1140/epjb/e2020-10304-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10304-2

Keywords

Navigation