Skip to main content

Advertisement

SpringerLink
Superconductivity and intra-unit-cell electronic nematic phase in the three-band model of cuprates
Download PDF
Download PDF
  • Regular Article
  • Open Access
  • Published: 21 September 2020

Superconductivity and intra-unit-cell electronic nematic phase in the three-band model of cuprates

  • Michal Zegrodnik1,
  • Andrzej Biborski1 &
  • Jozef Spałek2 

The European Physical Journal B volume 93, Article number: 183 (2020) Cite this article

  • 306 Accesses

  • 4 Citations

  • 1 Altmetric

  • Metrics details

Abstract

The intra-unit-cell nematic phase is studied within the three-band Emery model of the cuprates by using the diagrammatic expansion of the Gutzwiller wave function (DE-GWF). According to our analysis a spontaneous rotational (C4) symmetry breaking of the electronic wave function, leading to the nematic behavior, can appear due to electron correlations induced mainly by the onsite Coulomb repulsion, even in the absence of the corresponding intersite oxygen–oxygen repulsion term. The latter has been considered as the triggering factor of the nematic state formation in a number of previous studies. Also, we show that at the transition to the nematic phase, electron concentration transfer from d- to p-orbitals takes place, apart from the usually discussed px∕py polarization. The nematicity appears in a similar doping range as the paired phase, showing that both phases may have a common origin, even though they compete. As we show a coexistence region of both superconductivity and nematicity appears in a relatively wide doping range. The results are discussed in view of the experimental findings corresponding to the relation between nematicity and pseudogap behavior.

Graphical abstract

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. M.J. Lawler, K. Fujita, J. Lee, A.R. Schmidt, Y. Kohsaka, C.K. Kim, H. Eisaki, S. Uchida, J.C. Davis, J.P. Sethna, E.-A. Kim, Nature 466, 347 (2010)

    Article  ADS  Google Scholar 

  2. B.A. Frandsen, E.S. Bozin, H. Hu, Y. Zhu, Y. Nozaki, H. Kageyama, Y.J. Uemura, W.G. Yin, S.J.L. Billinge, Nat. Commun. 5, 5761 (2014)

    Article  ADS  Google Scholar 

  3. A.J. Achkar, M. Zwiebler, C. McMahon, F. He, R. Sutarto, I. Djianto, Z. Hao, M.J.P. Gingras, M. Hücker, G.D. Gu, A. Revcolevschi, H. Zhang, Y.J. Kim, J. Geck, D.G. Hawthorn, Science 351, 576 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  4. Y. Sato, S. Kasahara, H. Murayama, Y. Kasahara, E.G. Moon, T. Nishizaki, T. Loew, J. Porras, B. Keimer, T. Shibauchi, Y. Matsuda, Nat. Phys. 13, 1074 (2017)

    Article  Google Scholar 

  5. A. Mesaros, K. Fujita, H. Eisaki, S. Uchida, J.C. Davis, S. Sachdev, J. Zaanen, M.J. Lawler, E.A. Kim, Science 333, 426 (2011)

    Article  ADS  Google Scholar 

  6. R. Comin, R. Sutarto, E.H. da Silva Neto, L. Chauviere, R. Liang, W.N. Hardy, D.A. Bonn, F. He, G.A. Sawatzky, A. Damascelli, Science 347, 1335 (2015)

    Article  ADS  Google Scholar 

  7. O. Cyr-Choinière, G. Grissonnanche, S. Badoux, J. Day, D.A. Bonn, W.N. Hardy, R. Liang, N. Doiron-Leyraud, L. Taillefer, Phys. Rev. B 92, 224502 (2015)

    Article  ADS  Google Scholar 

  8. D. Pelc, M. Vukovi, H.J. Grafe, S.H. Baek, M. Požek, Nat. Commun. 7, 12775 (2016)

    Article  ADS  Google Scholar 

  9. Y. Daou, J. Chang, D. LeBoeuf, O. Cyr-Choinière, F. Lalibert, N. Doiron-Leyraud, B.J. Ramshaw, R. Liang, D.A. Bonn, W.N. Hardy, L. Taillefer, Nature 463, 519 (2010)

    Article  ADS  Google Scholar 

  10. M. Hashimoto, I.M. Vishik, R.H. He, T.P. Devereaux, Z.X. Shen, Nat. Phys. 10, 483 (2014)

    Article  Google Scholar 

  11. H. Yamase, H. Kohno, J. Phys. Soc. Jpn. 69, 2151 (2000)

    Article  ADS  Google Scholar 

  12. S. Okamoto, D. Sénéchal, M. Civelli, A.M.S. Tremblay, Phys. Rev. B 82, 180511 (2010)

    Article  ADS  Google Scholar 

  13. J. Kaczmarczyk, T. Schickling, J. Bünemann, Phys. Rev. B 94, 085152 (2016)

    Article  ADS  Google Scholar 

  14. M. Kitatani, N. Tsuji, H. Aoki, Phys. Rev. B 95, 075109 (2017)

    Article  ADS  Google Scholar 

  15. M. Zegrodnik, J. Spałek, New J. Phys. 20, 063015 (2018)

    Article  ADS  Google Scholar 

  16. S. Slizovskiy, P. Rodriguez-Lopez, J.J. Betouras, Phys. Rev. B 98, 075126 (2018)

    Article  ADS  Google Scholar 

  17. S.A. Kivelson, E. Fradkin, T.H. Geballe, Phys. Rev. B 69, 144505 (2004)

    Article  ADS  Google Scholar 

  18. M.H. Fischer, E.A. Kim, Phys. Rev. B 84, 144502 (2011)

    Article  ADS  Google Scholar 

  19. S. Bulut, W.A. Atkinson, A.P. Kampf, Phys. Rev. B 88, 155132 (2013)

    Article  ADS  Google Scholar 

  20. M. Tsuchiizu, K. Kawaguchi, Y. Yamakawa, H. Kontani, Phys. Rev. B 97, 165131 (2018)

    Article  ADS  Google Scholar 

  21. M. Zegrodnik, J. Spałek, Phys. Rev. B 96, 054511 (2017)

    Article  ADS  Google Scholar 

  22. J. Spałek, M. Zegrodnik, J. Kaczmarczyk, Phys. Rev. B 95, 024506 (2017)

    Article  ADS  Google Scholar 

  23. M. Zegrodnik, A. Biborski, M. Fidrysiak, J. Spałek, Phys. Rev. B 99, 104511 (2019)

    Article  ADS  Google Scholar 

  24. M.S. Hybertsen, M. Schlüter, N.E. Christensen, Phys. Rev. B 39, 9028 (1989)

    Article  ADS  Google Scholar 

  25. A.K. McMahan, J.F. Annett, R.M. Martin, Phys. Rev. B 42, 6268 (1990)

    Article  ADS  Google Scholar 

  26. M. Hirayama, Y. Yamaji, T. Misawa, M. Imada, Phys. Rev. B 98, 134501 (2018)

    Article  ADS  Google Scholar 

  27. J. Kaczmarczyk, J. Spałek, T. Schickling, J. Bünemann, Phys. Rev. B 88, 115127 (2013)

    Article  ADS  Google Scholar 

  28. J. Kaczmarczyk, J. Bünemann, J. Spaek, New J. Phys. 16, 073018 (2014)

    Article  ADS  Google Scholar 

  29. M.M. Wysokiński, J. Kaczmarczyk, J. Spałek, Phys. Rev. B 94, 024517 (2016)

    Article  ADS  Google Scholar 

  30. K.Z. Münster, J. Bünemann, Phys. Rev. B 94, 045135 (2016)

    Article  ADS  Google Scholar 

  31. K.B. Lyons, P.A. Fleury, L.F. Schneemeyer, J.V. Waszczak, Phys. Rev. Lett. 60, 732 (1988)

    Article  ADS  Google Scholar 

  32. S. Sugai, S.i. Shamoto, M. Sato, Phys. Rev. B 38, 6436 (1988)

    Article  ADS  Google Scholar 

  33. G. Blumberg, P. Abbamonte, M.V. Klein, W.C. Lee, D.M. Ginsberg, L.L. Miller, A. Zibold, Phys. Rev. B 53, R11930 (1996)

    Article  ADS  Google Scholar 

  34. Y. Mizuno, T. Tohyama, S. Maekawa, Phys. Rev. B 58, R14713 (1998)

    Article  ADS  Google Scholar 

  35. M. Ogata, H. Fukuyama, Rep. Prog. Phys. 71, 036501 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Krakow, Poland

    Michal Zegrodnik & Andrzej Biborski

  2. Institute of Theoretical Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348, Krakow, Poland

    Jozef Spałek

Authors
  1. Michal Zegrodnik
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Andrzej Biborski
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Jozef Spałek
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Michal Zegrodnik.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zegrodnik, M., Biborski, A. & Spałek, J. Superconductivity and intra-unit-cell electronic nematic phase in the three-band model of cuprates. Eur. Phys. J. B 93, 183 (2020). https://doi.org/10.1140/epjb/e2020-10290-3

Download citation

  • Received: 08 June 2020

  • Accepted: 17 August 2020

  • Published: 21 September 2020

  • DOI: https://doi.org/10.1140/epjb/e2020-10290-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Solid State and Materials
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.