Sn replacement influence on magnetic, electronic, thermodynamic, thermoelectric and transport properties in shandite compounds of Co3In2−xSnxS2

Abstract

In this paper, we have investigated some physical properties of Co3In2−xSnxS2 (x = 0, 1, and 2) compounds. The doping in Co3In2S2, through chemical substitution of indium by tin as a low-cost neighboring element, affects their structural, electronic, magnetic, thermodynamic, and thermoelectric properties. The density functional theory (DFT) calculations show that indium substitution leads to a transition from weak-ferromagnetic metal (x = 0), to nonmagnetic semiconductor with low band gap energy at x = 1, and to a ferromagnetic half-metal at x = 2. The thermal properties, obtained by using the Gibbs code, were evaluated with temperature at various pressures from 0 to 20 GPa. The results demonstrated that chemical substitution in the studied materials affects their physical properties leading to an interest candidate for thermoelectric uses at ambient or at low temperature.

Graphical abstract

This is a preview of subscription content, log in to check access.

References

  1. 1.

    M. Zabel, S. Wandinger, K. Range, Rev. Chim. Miner. 20, 698 (1983)

    Google Scholar 

  2. 2.

    A. Michelet, G. Collin, O. Gorochov, J. Less-Common Met. 97, 73 (1984)

    Google Scholar 

  3. 3.

    J.A. Wilson, A.D. Yoffe, Adv. Phys. 18, 193 (1969)

    ADS  Google Scholar 

  4. 4.

    S. Ogawa, J. Appl. Phys. 50, 2308 (1979)

    ADS  Google Scholar 

  5. 5.

    R.A. de Groot, F.M. Mueller, P.G. Engen, K.H. Buschow, Phys. Rev. Lett. 50, 2024 (1983)

    ADS  Google Scholar 

  6. 6.

    C.M. Fang, G.A. de Wijs, R.A. de Groot, J. Appl. Phys. 91, 8340 (2002)

    ADS  Google Scholar 

  7. 7.

    W.E. Pickett, J.S. Moodera, Phys. Today 54, 39 (2001)

    ADS  Google Scholar 

  8. 8.

    M.I. Katsnelson, V. Yu Irkhin, L. Chioncel, A.I. Lichtenstein, R.A. de Groot, Rev. Mod. Phys. 80, 315 (2008)

    ADS  Google Scholar 

  9. 9.

    M.A. Kassem, Y. Tabata, T. Waki, H. Nakamura, J. Cryst. Growth 426, 208 (2015)

    ADS  Google Scholar 

  10. 10.

    M. Fujioka, T. Shibuya, J. Nakai, K. Yoshiyasu, Y. Sakai, Y. Takano, Y. Kamihara, M. Matoba, Solid State Commun. 199, 56 (2014)

    ADS  Article  Google Scholar 

  11. 11.

    F. Khelfaoui, A. Boudali, A. Bentayeb, L.H. Omari, Y. Si Abderrahmane, Acta Phys. Pol. A 133, 1 (2018)

    Article  Google Scholar 

  12. 12.

    K.A. Gschneidner Jr., V.K. Pecharsky, A.O. Tsokol, Rep. Prog. Phys. 68, 1479 (2005)

    ADS  Article  Google Scholar 

  13. 13.

    B.G. Shen, J.R. Sun, F.X. Hu, H.W. Zhang, Z.H. Cheng, Adv. Mater. 21, 4545 (2009)

    Article  Google Scholar 

  14. 14.

    T. Sakamoto, M. Wakeshima, Y. Hinatsu, J. Phys.: Condens. Matter 18, 4417 (2006)

    ADS  Google Scholar 

  15. 15.

    K. Biswas, L.-D. Zhao, M.G. Kanatzidis, Adv. Energy Mater. 2, 634 (2012)

    Article  Google Scholar 

  16. 16.

    T. Kajikawa, inThermoelectrics Handbook: Macro to Nano, edited by D.M. Rowe (CRC Press, Boca Raton, FL, 2006), Chap. 50

  17. 17.

    R. Weihrich, I. Anusca, Z. Anorg. Allg. Chem. 632, 1531 (2006)

    Article  Google Scholar 

  18. 18.

    R. Weihrich, A.C. Stückl, M. Zabel, W. Schnelle, Z. Anorg. Allg. Chem. 630, 1767 (2004)

    Google Scholar 

  19. 19.

    P. Blaha, K. Schwarz, P. Sorantin, S.B. Trickey, Comput. Phys. Commun. 59, 399 (1990)

    ADS  Article  Google Scholar 

  20. 20.

    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, inWIEN2K. An Augmented Plane Wave and Local Orbitals Program for Calculating Crystal Properties, edited by K. Schwarz (Vienna University of Technology, Vienna, 2001)

  21. 21.

    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  22. 22.

    G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175, 67 (2006)

    ADS  Google Scholar 

  23. 23.

    A. Kokalj, Comput. Mater. Sci. 28, 155 (2003)

    Google Scholar 

  24. 24.

    P. Mangelis, P. Vaqueiro, J.C. Jumas, I. da Silva, R.I. Smith, A.V. Powell, J. Solid State Chem. 251, 204 (2017)

    ADS  Google Scholar 

  25. 25.

    P. Vaqueiro, G.G. Sobany, Solid State Sci. 11, 513 (2009)

    ADS  Google Scholar 

  26. 26.

    A. Umetani, E. Nagoshi, T. Kubodera, M. Matoba, Physica B 403, 1356 (2008)

    ADS  Google Scholar 

  27. 27.

    W. Schnelle, A. Leithe-Jasper, H. Rosner, F.M. Schappacher, R. Pöttgen, F. Pielnhofer, R. Weihrich, Phys. Rev. B 88, 144404 (2013)

    ADS  Google Scholar 

  28. 28.

    J. Corps, P. Vaqueiro, A. Aziz, R. Grau-Crespo, W. Kockelmann, J.C. Jumas, A.V. Powell, Chem. Mater. 27, 3946 (2015)

    Google Scholar 

  29. 29.

    A. Aziz, P. Mangelis, P. Vaqueiro, A.V. Powell, R. Grau-Crespo, Phys. Rev. B 94, 165131 (2016)

    ADS  Google Scholar 

  30. 30.

    S. Tab, A. Boudali, M. Berber, M.D. Khodja, L.H. Omari, H. Moujri, Appl. Phys. A 126, 544 (2020)

    ADS  Google Scholar 

  31. 31.

    T.M. Bhat, D.C. Gupta, J. Phys. Chem. Sol. 112, 190 (2018)

    ADS  Google Scholar 

  32. 32.

    T.M. Bhat, D.C. Gupta, J. Magn. Magn. Mater. 449, 493 (2018)

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lhaj el Hachemi Omari.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saadi, A., Omari, L.e.H. & Boudali, A. Sn replacement influence on magnetic, electronic, thermodynamic, thermoelectric and transport properties in shandite compounds of Co3In2−xSnxS2. Eur. Phys. J. B 93, 180 (2020). https://doi.org/10.1140/epjb/e2020-10253-8

Download citation

Keywords

  • Computational Methods