Bringing up of chimera-like states in oscillator networks of mixed topologies

Abstract

In a globally coupled network of chaotically oscillating identical Rössler systems, chimera-like states have been made to exist by strengthening, appropriate links of a node that fall under nonlocal topology with additional weak signals, sequentially to sufficient number of nodes of the network. We find a power-law dependence of the distance of oscillators with the spatial correlation function which reveals that the obtained chimera-like states belong to phase chimera category. Further, we define a quantity R to denote the ratio of nodes with additional weak nonlocal strength and observe that the threshold value of it (RTh) to trigger chimera-like states changes as we alter the coupling radius. Precisely, we see that RTh decreases as we increase the coupling radius. When we widen our scope of study to the small-world networks we find that RTh decreases for higher probability values. In addition, we have shown that the chimera-like states even exist when we restrict the additional weak nonlocal signals to be one-sided. We determine the nature of different dynamical states by using the values of strength of incoherence, in general, and category of chimera-like states by means of spatial correlation function, in particular.

Graphical abstract

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Y. Kuramoto, D. Battogtokh, Nonlinear. Phenom. Complex. Syst. 5, 380 (2002)

    Google Scholar 

  2. 2.

    D.M. Abrams, S.H. Strogatz, Phys. Rev. Lett. 93, 174102 (2004)

    ADS  Google Scholar 

  3. 3.

    D.M. Abrams, S.H. Strogatz, Int. J. Bifurc. Chaos 16, 21 (2006)

    Google Scholar 

  4. 4.

    D.M. Abrams, R. Mirollo, S.H. Strogatz, D.A. Wiley, Phys. Rev. Lett. 101, 084103 (2008)

    ADS  Google Scholar 

  5. 5.

    I. Omelchenko, Y. Maistrenko, P. Hövel, E. Schöll, Phys. Rev. Lett. 106, 234102 (2011)

    ADS  Google Scholar 

  6. 6.

    I. Omelchenko, B. Riemenschneider, P. Hövel, Y. Maistrenko, E. Schöll, Phys. Rev. E 85, 026212 (2012)

    ADS  Google Scholar 

  7. 7.

    N. Semenova, A. Zakharova, E. Schöll, V. Anishchenko, Europhys. Lett. 112, 40002 (2015)

    ADS  Google Scholar 

  8. 8.

    T.E. Vadivasova, G.I. Strelkova, S.A. Bogomolov, V.S. Anishchenko, Chaos 26, 093108 (2016)

    ADS  MathSciNet  Google Scholar 

  9. 9.

    S.A. Bogomolov, A.V. Slepnev, G.I. Strelkova, E. Schöll, V.S. Anishchenko, Commun. Nonlinear Sci. Numer. Simul. 43, 25 (2017)

    ADS  MathSciNet  Google Scholar 

  10. 10.

    G.C. Sethia, A. Sen, G.L. Johnston, Phys. Rev. E 88, 042917 (2013)

    ADS  Google Scholar 

  11. 11.

    I. Omelchenko, O.E. Omelchenko, P. Hövel, E. Schöll, Phys. Rev. Lett. 110, 224101 (2013)

    ADS  Google Scholar 

  12. 12.

    J. Hizanidis, V. Kanas, A. Bezerianos, T. Bountis, Int. J. Bifurc. Chaos 24, 1450030 (2014)

    Google Scholar 

  13. 13.

    V.M. Bastidas, I. Omelchenko, A. Zakharova, E. Schöll, T. Brandes, Phys. Rev. E 92, 062924 (2015)

    ADS  Google Scholar 

  14. 14.

    N.D. Tsigkri-DeSmedt, J. Hizanidis, P. Hövel, A. Provata, Eur. Phys. J. 225, 1149 (2016)

    Google Scholar 

  15. 15.

    J. Hizanidis, E. Panagakou, I. Omelchenko, E. Schöll, P. Hövel, A. Provata, Phys. Rev. E 92, 012915 (2015)

    ADS  MathSciNet  Google Scholar 

  16. 16.

    D.P. Rosin, D. Rontani, D.J. Gauthier, Phys. Rev. E 89, 042907 (2014)

    ADS  Google Scholar 

  17. 17.

    A.M. Hagerstrom, T.E. Murphy, R. Roy, P. Hövel, I. Omelchenko, E. Schöll, Nat. Phys. 8, 658 (2012)

    Google Scholar 

  18. 18.

    L. Larger, B. Penkovsky, Y. Maistrenko, Phys. Rev. Lett. 111, 054103 (2013)

    ADS  Google Scholar 

  19. 19.

    L. Larger, B. Penkovsky, Y. Maistrenko, Nat. Commun. 6, 7752 (2015)

    ADS  Google Scholar 

  20. 20.

    M.R. Tinsley, S. Nkomo, K. Showalter, Nat. Phys. 8, 662 (2012)

    Google Scholar 

  21. 21.

    S. Nkomo, M.R. Tinsley, K. Showalter, Phys. Rev. Lett. 110, 244102 (2013)

    ADS  Google Scholar 

  22. 22.

    M. Wickramasinghe, I.Z. Kiss, PLoS ONE 8, e80586 (2013)

    ADS  Google Scholar 

  23. 23.

    T. Kapitaniak, P. Kuzma, J. Wojewoda, K. Czolczynski, Y. Maistrenko, Sci. Rep. 4, 6379 (2014)

    ADS  Google Scholar 

  24. 24.

    C.R. Laing, Physica D 240, 1960 (2011)

    ADS  Google Scholar 

  25. 25.

    G. Bordyugov, A.S. Pikovsky, M.G. Rosenblum, Phys. Rev. E 82, 035205 (2010)

    ADS  MathSciNet  Google Scholar 

  26. 26.

    G. Filatrella, A.H. Neilson, N.F. Pedersen, Eur. Phys. J. B 61, 485 (2008)

    ADS  Google Scholar 

  27. 27.

    E. Olbrich, J.C. Claussen, P. Achermann, Philos. Trans. R. Soc. A 369, 3884 (2011)

    ADS  Google Scholar 

  28. 28.

    S.R. Ujjwal, N. Punetha, R. Ramaswamy, Phys. Rev. E 93, 012207 (2016)

    ADS  Google Scholar 

  29. 29.

    A. Maksimenko, V. Makarov, K. Bera, D. Ghosh, K. Dana, V. Goremyko, S. Frolov, A. Koronovskii, E. Hramov, Phys. Rev. E 94, 052205 (2016)

    ADS  Google Scholar 

  30. 30.

    T. Banerjee, P.S. Dutta, A. Zakharova, E. Schöll, Phys. Rev. E 94, 032206 (2016)

    ADS  Google Scholar 

  31. 31.

    Y. Zhu, Y. Li, M. Zhang, J. Yang, Eur. Phys. Lett. 97, 10009 (2012)

    ADS  Google Scholar 

  32. 32.

    Y. Suda, K. Okuda, Phys. Rev. E 92, 060901(R) (2015)

    ADS  Google Scholar 

  33. 33.

    Y. Kawamura, Phys. Rev. E 75, 056204 (2007)

    ADS  Google Scholar 

  34. 34.

    I.A. Shepelev, G.I. Strelkova, V.S. Anishchenko, Chaos 28, 063119 (2018)

    ADS  MathSciNet  Google Scholar 

  35. 35.

    E.A. Martens, C.R. Laing, S.H. Strogatz, Phys. Rev. Lett. 104, 044101 (2010)

    ADS  Google Scholar 

  36. 36.

    C. Gu, G. St-Yves, J. Davidsen, Phys. Rev. Lett. 111, 134101 (2013)

    ADS  Google Scholar 

  37. 37.

    M.J. Panaggio, D.M. Abrams, Phys. Rev. E 91, 022909 (2015)

    ADS  MathSciNet  Google Scholar 

  38. 38.

    M.J. Panaggio, D.M. Abrams, Phys. Rev. Lett. 110, 094102 (2013)

    ADS  Google Scholar 

  39. 39.

    I. Omelchenko, A. Provata, J. Hizanidis, E. Schöll, P. Hövel, Phys. Rev. E 91, 022917 (2015)

    ADS  MathSciNet  Google Scholar 

  40. 40.

    A. Rothkegel, K. Lehnertz, New J. Phys. 16, 055006 (2014)

    ADS  Google Scholar 

  41. 41.

    J. Tang, J. Zhang, J. Ma, J.M. Luo, Sci. China Tech. Sci. 61 (2018)

  42. 42.

    Y. Zhu, Z. Zheng, J. Yang, Phys. Rev. E 89, 022914 (2014)

    ADS  Google Scholar 

  43. 43.

    B.K. Bera, D. Ghosh, T. Banerjee, Phys. Rev. E 94, 012215 (2016)

    ADS  Google Scholar 

  44. 44.

    N. Yao, Z.-G. Huang, C. Grebogi, Y.-C. Lai, Sci. Rep. 5, 12988 (2015)

    ADS  Google Scholar 

  45. 45.

    A. Buscarino, M. Frasca, L.V. Gambuzza, P. Hövel, Phys. Rev. E 91, 022817 (2015)

    ADS  Google Scholar 

  46. 46.

    S.I. Shima, Y. Kuramoto, Phys. Rev. E 69, 036213 (2004)

    ADS  Google Scholar 

  47. 47.

    R. Gopal, V.K. Chandrasekar, A. Venkatesan, M. Lakshmanan, Phys. Rev. E 89, 052914 (2014)

    ADS  Google Scholar 

  48. 48.

    R. Gopal, V.K. Chandrasekar, D.V. Senthilkumar, A. Venkatesan, M. Lakshmanan, Phys. Rev. E 91, 062916 (2015)

    ADS  MathSciNet  Google Scholar 

  49. 49.

    V.K. Chandrasekar, R. Gopal, D.V. Senthilkumar, M. Lakshmanan, Phys. Rev. E 94(1), 012208 (2016)

    ADS  Google Scholar 

  50. 50.

    R. Gopal, V.K. Chandrasekar, D.V. Senthilkumar, A. Venkatesan, M. Lakshmanan, Commun. Nonlinear Sci. Numer. Simul. 59, 30 (2018)

    ADS  MathSciNet  Google Scholar 

  51. 51.

    C.R. Hens, A. Mishra, P.K. Roy, A. Sen, S.K. Dana, Pramana. J. Phys 84, 229 (2015)

    ADS  Google Scholar 

  52. 52.

    A. Mishra, C. Hens, M. Bose, P.K. Roy, S.K. Dana, Phys. Rev. E 92, 062920 (2015)

    ADS  Google Scholar 

  53. 53.

    C. Meena, K. Murali, S. Sinha, Int. J. Bifurc. Chaos 26, 1630023 (2016)

    Google Scholar 

  54. 54.

    L. Schmidt, K. Schönleber, K. Krischer, V. Garcia-Morales, Chaos 24, 013102 (2014)

    ADS  MathSciNet  Google Scholar 

  55. 55.

    L. Schmidt, K. Krischer, Phys. Rev. Lett. 114, 034101 (2015)

    ADS  Google Scholar 

  56. 56.

    G.C. Sethia, A. Sen, Phys. Rev. Lett. 112, 144101 (2014)

    ADS  Google Scholar 

  57. 57.

    A. Yeldesbay, A. Pikovsky, M. Rosenblum, Phys. Rev. Lett. 112, 144103 (2014)

    ADS  Google Scholar 

  58. 58.

    V.K. Chandrasekar, R. Gopal, A. Venkatesan, M. Lakshmanan, Phys. Rev. E 90, 062913 (2014)

    ADS  Google Scholar 

  59. 59.

    I.A. Shepelev, T.E. Vadivasova, Phys. Lett. A 382, 690 (2018)

    ADS  MathSciNet  Google Scholar 

  60. 60.

    P. Chandran, R. Gopal, V.K. Chandrasekar, N. Athavan, Chaos 29, 053125 (2019)

    ADS  MathSciNet  Google Scholar 

  61. 61.

    V. Kohar, S. Sinha, Chaos Solitons Fractals 54, 127 (2013)

    ADS  MathSciNet  Google Scholar 

  62. 62.

    C.M. Krause, H. Lang, M. Laine, B. Pörn, Electroencephalogr. Clin. Neurophysiol. 98, 319 (1996)

    Google Scholar 

  63. 63.

    L. Leocani, C. Toro, P. Manganotti, P. Zhuang, M. Hallet, Electroencephalogr. Clin. Neurophysiol. 104, 199 (1997)

    Google Scholar 

  64. 64.

    Y. Kuramoto, Prog. Theor. Phys. 94, 321 (1995)

    ADS  Google Scholar 

  65. 65.

    Y. Kuramoto, H. Nakao, Phys. Rev. Lett. 76, 4352 (1996)

    ADS  Google Scholar 

  66. 66.

    Y. Kuramoto, H. Nakao, Physica D 103, 294 (1997)

    ADS  Google Scholar 

  67. 67.

    Y. Kuramoto, D. Battogtokh, H. Nakao, Phys. Rev. Lett. 81, 3543 (1998)

    ADS  Google Scholar 

  68. 68.

    Y. Kuramoto, H. Nakao, D. Battogtokh, Physica A 288, 244 (2000)

    ADS  MathSciNet  Google Scholar 

  69. 69.

    M.E.J. Newman, D.J. Watts, Phys. Lett. A 263, 341 (1999)

    ADS  MathSciNet  Google Scholar 

  70. 70.

    D. Wu, S. Zhu, X. Luo, L. Wu, Phys. Rev. E 84, 021102 (2011)

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vallipalayam Kuppusamy Chandrasekar.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chandran, P., Gopal, R., Chandrasekar, V.K. et al. Bringing up of chimera-like states in oscillator networks of mixed topologies. Eur. Phys. J. B 93, 181 (2020). https://doi.org/10.1140/epjb/e2020-10220-5

Download citation

Keywords

  • Statistical and Nonlinear Physics