Skip to main content
Log in

Configuration barrier towards parity-time symmetry in randomly connected mesoscopic sets on a graph

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We address the issue of dissipative vs. non-dissipative behavior in a mesoscopic set of coupled elements such as oscillators, with one half having gain and the other half having losses. We introduce a graph with coupling as the graph edges in given fixed number and gain/loss elements as its nodes. This relates to parity-time symmetry, notably in optics, e.g. set of coupled fibers, and more generally to the issue of taming divergence related to imaginary parts of eigenvectors in various network descriptions, for instance biochemical, neuronal, ecological. We thus look for the minimization of the imaginary part of all eigenvalues altogether, with a collective figure of merit. As more edges than gain/loss pairs are introduced, the unbroken cases , i.e., stable cases with real eigenvalues in spite of gain and loss, become statistically very scarce. A minimization from a random starting point by moving one edge at a time is studied, amounting to investigate how the hugely growing configuration number impedes the attainment of the desired minimally-dissipative target. The minimization path and its apparent stalling point are analyzed in terms of network connectivity metrics. We expand in the end on the relevance in biochemical signaling networks and the so-called “stability-optimized circuits” relevant to neural organization.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Feng, R. El-Ganainy, L. Ge, Nat. Photon. 11, 752 (2017)

    Article  ADS  Google Scholar 

  2. C.M. Bender, S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  3. Y. Kim, S. Warren, F Favero, J. Sone, J. Clegg, M. Neil, C. Paterson, J. Knight, P. French, C. Dunsby, Opt. Express 36, 3661 (2018)

    Article  ADS  Google Scholar 

  4. H. Chen, C. Jin, B. Huang, N.K. Fontaine, R. Ryf, K. Shang, N. Grégoire, S. Morency, R.-J. Essiambre, G. Li, Y. Messaddeq, S. LaRochelle, Nat. Photon. 10, 529 (2016)

    Article  ADS  Google Scholar 

  5. Y. Jung, M. Wada, K. Shibahara, S. Jain, I.A. Davidson, P. Barua, J.R. Hayes, T. Sakamoto, T. Mizuno, Y. Miyamoto, Y. Sasaki, K. Saitoh, K. Nakajima, D.J. Richardson, IEEE J. Lightwave Technol. 38, 2938 (2020)

    Article  ADS  Google Scholar 

  6. D. Lin, J. Carpenter, Y. Feng, S. Jain, Y. Jung, Y. Feng, M.N. Zervas, D.J. Richardson, Nat. Commun. 11, 3986 (2020)

    Article  ADS  Google Scholar 

  7. M. Gaio, D. Saxena, J. Bertolotti, D. Pisignano, A. Camposeo, R. Sapienza, Nat. Commun. 10, 226 (2019)

    Article  ADS  Google Scholar 

  8. S. Rotter, Nat. Photon. 13, 140 (2019)

    Article  ADS  Google Scholar 

  9. H.A. Haus, Such modal propagation constants are those of the solution of the source-free Maxwell equation, usually cast into a wave equation when all fields of a given mode have an exp(iβ~z) dependence along the invariant z-axis, inWaves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, 1984)

  10. A. Lupu, H. Benisty, A. Degiron, Opt. Express 21, 21651 (2013)

    Article  ADS  Google Scholar 

  11. G. Oster, A.S. Perelson, A. Katchalsky, Q. Rev. Biophys. 6, 1 (1973)

    Article  Google Scholar 

  12. D.C. Mikulecky, Comput. Chem. 25, 369 (2001)

    Article  Google Scholar 

  13. J.C. Delvenne, H. Sandberg, Physica D 267, 123 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  14. B. Maschke, A. van derSchaft, IFAC-Pap. OnLine 52, 418 (2019)

    Article  Google Scholar 

  15. A. Lotka, Proc. Natl. Acad. Sci. U.S.A. 8, 147 (1922)

    Article  ADS  Google Scholar 

  16. A. Lotka, Proc. Natl. Acad. Sci. U.S.A. 7, 168 (1921)

    Article  ADS  Google Scholar 

  17. K.H. Jensen, M.A. Zwienieck, K. Berg-Sørensen, H. Bruus, N.M. Holbrook, J. Liesche, A. Schulz, T. Bohr, Rev. Mod. Phys. 88, 035007–1 (2016)

    Article  ADS  Google Scholar 

  18. A.R. Zomorrodi, D. Segrè, J. Mol. Biol. 428, 837 (2016)

    Article  Google Scholar 

  19. P. Ghisellini, C. Cialani, S. Ulgiati, J. Cleaner Prod. 114, 11 (2016)

    Article  Google Scholar 

  20. R.E. May, Nature 238, 413 (1972)

    Article  ADS  Google Scholar 

  21. I.V. Barashenkov, L. Baker, N.V. Alexeeva, Phys. Rev. A 87, 033819 (2013)

    Article  ADS  Google Scholar 

  22. H. Benisty, A. Lupu, A. Degiron, Phys. Rev. A 91, 053825 (2015)

    Article  ADS  Google Scholar 

  23. N.X.A. Rivolta, H. Benisty, B. Maes, Phys. Rev. A 96, 023864 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  24. S. Lepri, C. Trono, G. Giacomelli, Phys. Rev. Lett. 118, 123901 (2017)

    Article  ADS  Google Scholar 

  25. L. Ge, A.D. Stone, Phys. Rev. X 4, 031011 (2014)

    Google Scholar 

  26. S. Assawaworrarit, X. Yu, S. Fan, Nature 546, 387 (2017)

    Article  ADS  Google Scholar 

  27. J.L. Gross, J. Yellen,Graph Theory and Its Applications, 2nd edn. (Chapman and Hall/CRC Press, Boca Raton, 2005)

  28. F.J. Dyson, J. Math. Phys. 3, 140 (1962), and references therein

    Article  ADS  Google Scholar 

  29. V. Brac de la Perrière, Q. Gaimard, H. Benisty, A. Ramdane, A. Lupu, J. Phys. D Appl. Phys. 52, 255103 (2019)

    Article  ADS  Google Scholar 

  30. H. Benisty, C. Yan, A.T. Lupu, A. Degiron, IEEE J. Lightwave Technol. 30, 2675 (2012)

    Article  ADS  Google Scholar 

  31. N.B. Nguyen, S.A. Maier, M. Hong, R. Oulton, New J. Phys. 18, 12502 (2016)

    Article  Google Scholar 

  32. F.A. Rodrigues, T.K.D.M. Peron, P. Ji, J. Kurths, Phys. Rep. 610, 1 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  33. J. Hofbauer, K. Sigmund,Evolutionary Games and Population Dynamics (Cambridge University Press, Cambridge, UK, 1998)

  34. V. Yukalov, E. Yukalova, D. Sornette, Eur. Phys. J. Special Topics 205, 313 (2012)

    Article  ADS  Google Scholar 

  35. S.E. Puliafito, J.L. Puliafito, M.C. Grand, Ecol. Econ. 65, 602 (2008)

    Article  Google Scholar 

  36. T.L. Hill,Free Energy Transduction and Biochemical Cycle Kinetics (Springer-Verlag, New York, Inc., 1989)

  37. J. Anderson, Y.C. Chang, A. Papachristodoulou, Automatica 47, 1165 (2011)

    Article  Google Scholar 

  38. R. Breitling, D. Gilbert, M. Heiner, R. Orton, Brief. Bioinform. 9, 404 (2008)

    Article  Google Scholar 

  39. R.N. Gutenkunst, J.J. Waterfall, F.P. Casey, K.S. Brown, C.R. Myers, J.P. Sethna, PLoS Comput. Biol. 3, e189 (2007)

    Article  ADS  Google Scholar 

  40. G. Tiana, S. Krishna, S. Pigolotti, M.H. Jensen, K. Sneppen, Phys. Biol. 4, R1 (2007)

    Article  ADS  Google Scholar 

  41. B.B. Aldridge, J.M. Burke, D.A. Lauffenburger, P.K. Sorger, Nat. Cell Biol. 8, 1195 (2006)

    Article  Google Scholar 

  42. A. Ciliberto, F. Capuani, J.J. Tyson, PLoS Comput. Biol. 3, 0463 (2007)

    Article  MathSciNet  Google Scholar 

  43. S.R. Caplan, A. Essig, Proc. Natl. Acad. Sci. U.S.A. 64, 211 (1969)

    Article  ADS  Google Scholar 

  44. S.R. Caplan, A. Essig,Bioenergetics and Linear Nonequilibrium Thermodynamics, The Steady State, Harvard Books in Biophysics Series (Harvard University Press, 2013), Vol. 3

  45. E. Feliu, C. Wiuf, J.R. Soc. Interface 9, 1224 (2012)

    Article  Google Scholar 

  46. S. di Santo, P. Villegas, R. Burioni, M.A. Muñoz, J. Stat. Mech. 2018, 073402 (2018)

    Article  Google Scholar 

  47. B.B. Aldridge, G. Haller, P.K. Sorger, D.A. Lauffenburger, IEE Proc.-Syst. Biol. 153, 425 (2006)

    Article  Google Scholar 

  48. J. Schaber, A. Lapytsko, A. Flockerzi, J.R. Soc. Interface 11, 20130971 (2013)

    Article  Google Scholar 

  49. K.T. Dineley, E.J. Weeber, C. Atkins, J.P. Adams, A.E. Anderson, J.D. Sweatt, J. Neurochem. 77, 961 (2001)

    Article  Google Scholar 

  50. J. Vera, J. Bachmann, A.C. Pfeifer, V. Becker, J.A. Hormiga, N.V. Torres Darias, J. Timmer, U. Klingmüller, O. Wolkenhauer, BMC Syst. Biol. 2, 38 (2008)

    Article  Google Scholar 

  51. A. Semyanova, Cell Calc. 78, 15 (2019)

    Article  Google Scholar 

  52. C. Goupil, H. Ouerdane, E. Herbert, G. Benenti, Y. D’Angelo, Ph. Lecoeur, Phys. Rev. E, 94, 032136 (2016)

    Article  ADS  Google Scholar 

  53. C. Goupil, H. Ouerdane, E. Herbert, C. Goupil, Y. D’Angelo, New J. Phys. 21, 023021 (2019)

    Article  ADS  Google Scholar 

  54. H. Vroylandt, A. Bonfils, G. Verley, Phys. Rev. E 93, 052123 (2016)

    Article  ADS  Google Scholar 

  55. M. Polettini, G. Verley, M. Esposito, Phys. Rev. Lett. 114, 050601 (2015)

    Article  ADS  Google Scholar 

  56. G. Hennequin, T.P. Vogels, W. Gerstner, Neuron 82, 1394 (2014)

    Article  Google Scholar 

  57. B.K. Murphy, K.D. Miller, Neuron 61, 635 (2009)

    Article  Google Scholar 

  58. J. Vanbiervliet, B. Vandereycken, W. Michiels, S. Vandewalle, M. Diehl, SIAM J. Optim. 20, 156 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henri Benisty.

Additional information

Supplementary material in the form of one pdf file available from the Journal web page at https://doi.org/10.1140/epjb/e2020-10219-x.

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benisty, H., Goupil, C. Configuration barrier towards parity-time symmetry in randomly connected mesoscopic sets on a graph. Eur. Phys. J. B 93, 192 (2020). https://doi.org/10.1140/epjb/e2020-10219-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10219-x

Keywords

Navigation