Skip to main content
Log in

The essential role of surface pinning in the dynamics of charge density waves submitted to external dc fields

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A charge density wave (CDW) submitted to an electric field displays a strong shear deformation because of pinning at the lateral surfaces of the sample. This CDW transverse pinning was recently observed but has received little attention from a theoretical point of view until now despite important consequences on electrical conductivity properties. Here, we provide a description of this phenomenon by considering a CDW submitted to an external dc electric field and constrained by boundary conditions including both longitudinal pinning due to electrical contacts and transverse surface pinning. A simple formula for the CDW phase is obtained in 3D by using the Green function and image charges method. In addition, an analytical expression of the threshold field dependence on both length and sample cross-section is obtained by considering the phase slip process. We show that the experimental data are well reproduced with this model and that bulk pinning can be neglected. This study shows that the dynamical properties of CDW systems could be mainly driven by boundary effects, despite the comparatively huge sample volumes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Cox, J. Singleton, R.D. McDonald, A. Migliori, P.B. Littlewood, Nat. Mater. 7, 25 (2008)

    ADS  Google Scholar 

  2. G. Grüner. Rev. Mod. Phys. 60, 112 (1988)

    Google Scholar 

  3. S. Onishi, M. Jamei, A. Zettl, New J. Phys. 19, 023001 (2017)

    ADS  Google Scholar 

  4. D. Le Bolloc’h, V.L.R. Jacques, N. Kirova, J. Dumas, S. Ravy, J. Marcus, F. Livet, Phys. Rev. Lett. 100, 096403 (2008)

    ADS  Google Scholar 

  5. V.L.R. Jacques, D. Le Bolloc’h, S. Ravy, J. Dumas, C.V. Colin, C. Mazzoli, Phys. Rev. B 85, 035113 (2012)

    ADS  Google Scholar 

  6. A. Rojo-Bravo, V.L.R. Jacques, D. Le Bolloc’h. Phys. Rev. B 94, 201120 (2016)

    ADS  Google Scholar 

  7. D. Feinberg, J. Friedel, J. Phys. France 49, 485 (1988)

    Google Scholar 

  8. L.P. Gor’kov, Pis’ma Zh. Eksp. Teor. Fiz. 38, 87 (1983)

    Google Scholar 

  9. L.P. Gor’kov, Sov. Phys. JETP 59, 1057 (1984)

    Google Scholar 

  10. S. Ramakrishna, M.P. Maher, V. Ambegaokar, U. Eckern, Phys. Rev. Lett. 68, 2066 (1992)

    ADS  Google Scholar 

  11. J.C. Gill, J. Phys. C 19, 6589 (1986)

    ADS  Google Scholar 

  12. J.-M. Duan, Phys. Rev. B 48, 4860 (1993)

    ADS  Google Scholar 

  13. K. Maki, Phys. Lett. A 202, 313 (1995)

    ADS  Google Scholar 

  14. A.A. Sinchenko, P. Lejay, P. Monceau, Phys. Rev. B 85, 241104 (2012)

    ADS  Google Scholar 

  15. N. Ogawa, K, Miyano, Phys. Rev. B 70, 075111 (2004)

    ADS  Google Scholar 

  16. V.L.R. Jacques, C. Laulhé, N. Moisan, S. Ravy, D. Le Bolloc’h, Phys. Rev. Lett. 117, 156401 (2016)

    ADS  Google Scholar 

  17. M. Prester, Phys. Rev. B 32, 2621 (1985)

    ADS  Google Scholar 

  18. P.J. Yetman, J.C. Gill, Solid State Commun. 62, 201 (1987)

    ADS  Google Scholar 

  19. G. Mihály, Gy. Hutiray, L. Mihály, Solid State Commun. 48, 203 (1983)

    ADS  Google Scholar 

  20. H. Requardt, F.Ya. Nad, P. Monceau, R. Currat, J.E. Lorenzo, S. Brazovskii, N. Kirova, G. Grübel, Ch. Vettier, Phys. Rev. Lett. 80, 5631 (1998)

    ADS  Google Scholar 

  21. S. Brazovskii, N. Kirova, H. Requardt, F. Ya. Nad, P. Monceau, R. Currat, J.E. Lorenzo, G. Grübel, Ch. Vettier, Phys. Rev. B 61, 10640 (2000)

    ADS  Google Scholar 

  22. S.G. Lemay, M.C. de Lind van Wijngaarden, T.L. Adelman, R.E. Thorne, Phys. Rev. B 57, 12781 (1998)

    ADS  Google Scholar 

  23. J. McCarten, D.A. DiCarlo, M.P. Maher, T.L. Adelman, R.E. Thorne, Phys. Rev. B 46, 4456 (1992)

    ADS  Google Scholar 

  24. D.V. Borodin, F.Ya. Nad’, Ya.S. Savitskaya, S.V. Zaitsev-Zotov, Physica B + C 143, 73 (1986)

    ADS  Google Scholar 

  25. E. Bellec, I. Gonzalez-Vallejo, V.L.R. Jacques, A.A. Sinchenko, A.P. Orlov, P. Monceau, S.J. Leake, D. Le Bolloc’h, Phys. Rev. B 101, 125122 (2020)

    ADS  Google Scholar 

  26. I. Batisti’c, A. Bjelis, L.P. Gor’kov, J. Phys. France 45, 1049 (1984)

    Google Scholar 

  27. M. Hayashi, H. Yoshioka, https://arXiv:cond-mat/0010102 (2000)

  28. H. Fukuyama, P.A. Lee, Phys. Rev. B 17, 535 (1978)

    ADS  Google Scholar 

  29. G. Gruner,Density Waves in Solids (CRC Press, Boca Raton, 2018)

  30. P.A. Lee, T.M. Rice, Phys. Rev. B 19, 3970 (1979)

    ADS  Google Scholar 

  31. K.F. Riley, M.P. Hobson, S.J. Bence,Mathematical Methods for Physics and Engineering: A Comprehensive Guide (Cambridge University Press, Cambridge, 2002)

  32. A. Zettl, G. Grüner, Phys. Rev. B 29, 755 (1984)

    ADS  Google Scholar 

  33. J.P. Pouget, B. Hennion, C. Escribe-Filippini, M. Sato, Phys. Rev. B 43, 8421 (1991)

    ADS  Google Scholar 

  34. C. Brun, J.C. Girard, Z.Z. Wang, J. Marcus, J. Dumas, C. Schlenker, Phys. Rev. B 72, 235119 (2005)

    ADS  Google Scholar 

  35. P. Mallet, K.M. Zimmermann, Ph. Chevalier, J. Marcus, J.Y. Veuillen, J.M. Gomez Rodriguez, Phys. Rev. B 60, 2122 (1999)

    ADS  Google Scholar 

  36. G. Gammie, J.S. Hubacek, S.L. Skala, R.T. Brockenbrough, J.R. Tucker, J.W. Lyding, Phys. Rev. B 40, 11965 (1989)

    ADS  Google Scholar 

  37. C. Brun, Z.-Z. Wang, P. Monceau, S. Brazovskii, Phys. Rev. Lett. 104, 256403 (2010)

    ADS  Google Scholar 

  38. C. Brun, Z.-Z. Wang, P. Monceau, Phys. Rev. B 80, 045423 (2009)

    ADS  Google Scholar 

  39. S. Brazovskii, C. Brun, Z.-Z. Wang, P. Monceau, Phys. Rev. Lett. 108, 096801 (2012)

    ADS  Google Scholar 

  40. A. Fang, N. Ru, I.R. Fisher, A. Kapitulnik, Phys. Rev. Lett. 99, 046401 (2007)

    ADS  Google Scholar 

  41. L. Fu, A.M. Kraft, B. Sharma, M. Singh, P. Walmsley, I.R. Fisher, M.C. Boyer, Phys. Rev. B 94, 205101 (2016)

    ADS  Google Scholar 

  42. B. Burk, R.E. Thomson, A. Zettl, J. Clarke, Phys. Rev. Lett. 66, 3040 (1991)

    ADS  Google Scholar 

  43. B.M. Murphy, J. Stettner, M. Traving, M. Sprung, I. Grotkopp, M. Müller, C.S. Oglesby, M. Tolan, W. Press, Physica B 336, 103 (2003)

    ADS  Google Scholar 

  44. X.-M. Zhu, R. Moret, H. Zabel, I.K. Robinson, E. Vlieg, R.M. Fleming, Phys. Rev. B 42, 8791 (1990)

    ADS  Google Scholar 

  45. N. Ru, Charge density wave formation in rare-earth tritellurides, PhD. thesis, Stanford University, 2008

  46. C. Schlenker, Low-dimensional electronic properties of molybdenum bronzes and oxides, inPhysics and Chemistry of Materials with Low-Dimensional Structures (Kluwer Academic Publishers, Berlin, 1989)

  47. E. Bellec, Study of charge density wave materials under current by X-ray diffraction, Ph.D. thesis, Université Paris-Saclay (ComUE), 2019

  48. G. Gammie, J.S. Hubacek, S.L. Skala, R.T. Brockenbrough, J.R. Tucker, J.W. Lyding, Phys. Rev. B 40, 11965 (1989)

    ADS  Google Scholar 

  49. C. Brun, J.C. Girard, Z.Z. Wang, J. Marcus, J. Dumas, C. Schlenker, Phys. Rev. B 72, 235119 (2005)

    ADS  Google Scholar 

  50. K. Maki, A. Virosztek, Phys. Rev. B 39, 9640 (1989)

    ADS  Google Scholar 

  51. S.G. Zybtsev, V.Ya. Pokrovskii, Physica B 460, 34 (2015)

    ADS  Google Scholar 

  52. L. Mihaly, G.X. Tessema, Phys. Rev. B 33, 5858 (1986)

    ADS  Google Scholar 

  53. L. Mihaly, G. Grüner, Solid State Commun. 50, 807 (1984)

    ADS  Google Scholar 

  54. A. Zettl, G. Grüner, Phys. Rev. B 26, 2298 (1982)

    ADS  Google Scholar 

  55. R. Danneau, A. Ayari, D. Rideau, H. Requardt, J.E. Lorenzo, L. Ortega, P. Monceau, R. Currat, G. Grübel, Phys. Rev. Lett. 89, 106404 (2002)

    ADS  Google Scholar 

  56. M. Peyrard,Physique des solitons (EDP Sciences, Les Ulis, 2012)

  57. F. Pockels, Z. Math. Physik 37, 100 (1892)

    Google Scholar 

  58. M. Lerch, Acta Math. 11, 19 (1887)

    MathSciNet  Google Scholar 

  59. A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, inHigher Transcendental Functions (McGraw-Hill Book Company, Inc., New York, Toronto, London, 1953), Vol. I. [Reprinted by R.E. Krieger Publishing Co. Inc., 1981]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewen Bellec.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellec, E., Jacques, V.L.R., Caillaux, J. et al. The essential role of surface pinning in the dynamics of charge density waves submitted to external dc fields. Eur. Phys. J. B 93, 165 (2020). https://doi.org/10.1140/epjb/e2020-10211-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10211-6

Keywords

Navigation