Skip to main content

Advertisement

Log in

Spin-density-wave-induced metal–insulator transition in two-band Hubbard model in application to the magnetic molecular conductor λ-(BETS)2FeCl4

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The magnetic molecular conductor λ-(BETS)2FeCl4 shows metal–insulator (MI) transition and antiferromagnetic (AF) transition simultaneously at TMI ~ 8.3 K. In its metallic phase, two Fermi surfaces coexist, and the one has good nesting, and the other has bad nesting. Although a scenario of the MI transition by the formation and stabilization of a spin-density-wave (SDW) AF order is likely, it is not straightforward due to the existence of the bad nesting Fermi surface. In this paper, we propose a novel mechanism for the MI transition motivated by this material. Our proposal is based on the square-lattice two-band ttU Hubbard model at half-filling, and we examine this mechanism in the ground state. As the key part of our mechanism, we incorporate the interband exchange interaction between the band A with good nesting Fermi surface and the band B with bad nesting Fermi surface. We analyze B, incorporating the electronic correlation effect into the quasi-particle weight by the slave-rotor approach. In this model, as the value of Ut increases, the SDW state in A induces another SDW state in B via the interband exchange interaction. As a result, this exchange interaction significantly decreases the value of Ut required for the MI transition.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hubbard, Proc. R. Soc. (London) A 276, 238 (1963)

    ADS  Google Scholar 

  2. J. Hubbard, Proc. R. Soc. (London) A 277, 237 (1964)

    ADS  Google Scholar 

  3. J. Hubbard, Proc. R. Soc. (London) A 281, 401 (1964)

    ADS  Google Scholar 

  4. A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

    Article  ADS  Google Scholar 

  5. M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998)

    Article  ADS  Google Scholar 

  6. E. Fradkin,Field Theories of Condensed Matter Physics, 2nd edn. (Cambridge University Press, Cambridge, 2013)

  7. H.Q. Lin, J.E. Hirsch, Phys. Rev. B 35, 3359 (1987)

    Article  ADS  Google Scholar 

  8. J.R. Schrieffer, X.G. Wen, S.C. Zhang, Phys. Rev. B 39, 11663 (1989)

    Article  ADS  Google Scholar 

  9. Y. Ran, F. Wang, H. Zhai, A. Vishwanath, D.-H. Lee, Phys. Rev. B 79, 014505 (2009)

    Article  ADS  Google Scholar 

  10. W.-H. Ko, P.A. Lee, Phys. Rev. B 83, 134515 (2011)

    Article  ADS  Google Scholar 

  11. H. Kobayashi, H. Tomita, T. Naito, A. Kobayashi, F. Sakai, T. Watanabe, P. Cassoux, J. Am. Chem. Soc. 118, 368 (1996)

    Article  Google Scholar 

  12. H. Cui, H. Kobayashi, A. Kobayashi, J. Mater. Chem. 17, 45 (2007)

    Article  Google Scholar 

  13. H. Kobayashi, A. Kobayashi, H. Tajima, Chemistry 6, 1688 (2011)

    Google Scholar 

  14. L. Brossard et al., Eur. Phys. J. B 1, 439 (1998)

    Article  ADS  Google Scholar 

  15. T. Mori, M. Katsuhara, J. Phys. Soc. Jpn. 71, 826 (2002)

    Article  ADS  Google Scholar 

  16. M. Terao, Y. Ohashi, Physica C 412, 324 (2004)

    Article  ADS  Google Scholar 

  17. S. Uji, H. Shinagawa, T. Terashima, T. Yakabe, Y. Terai, M. Tokumoto, A. Kobayashi, H. Tanaka, H. Kobayashi, Nature 410, 908 (2001)

    Article  ADS  Google Scholar 

  18. L. Balicas, J.S. Brooks, K. Storr, S. Uji, M. Tokumoto, H. Tanaka, H. Kobayashi, A. Kobayashi, V. Barzykin, L.P. Gor’kov, Phys. Rev. Lett. 87, 067002 (2001)

    Article  ADS  Google Scholar 

  19. O. Cépas, R.H. McKenzie, J. Merino, Phys. Rev. B 65, 100502 (2002)

    Article  ADS  Google Scholar 

  20. H. Akiba, S. Nakano, Y. Nishio, K. Kajita, B. Zhou, A. Kobayashi, H. Kobayashi, J. Phys. Soc. Jpn. 78, 8 (2009)

    Article  Google Scholar 

  21. T. Kobayashi, A. Kawamoto, Phys. Rev. B 96, 125115 (2017)

    Article  ADS  Google Scholar 

  22. C. Hotta, H. Fukuyama, J. Phys. Soc. Jpn. 69, 2577 (2000)

    Article  ADS  Google Scholar 

  23. H. Aizawa, T. Koretsune, K. Kuroki, H. Seo, J. Phys. Soc. Jpn. 87, 093701 (2018)

    Article  ADS  Google Scholar 

  24. M.C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963)

    Article  ADS  Google Scholar 

  25. M.C. Gutzwiller, Phys. Rev. 134, A923 (1964)

    Article  ADS  Google Scholar 

  26. M.C. Gutzwiller, Phys. Rev. 137, A1726 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  27. W.F. Brinkman, T.M. Rice, Phys. Rev. B 2, 4302 (1970)

    Article  ADS  Google Scholar 

  28. S. Florens, A. Georges, Phys. Rev. B 70, 035114 (2004)

    Article  ADS  Google Scholar 

  29. L. de’Medici, A. Georges, S. Biermann, Phys. Rev. B 72, 205124 (2005)

    Article  ADS  Google Scholar 

  30. H. Shimahara, Y. Kono, J. Phys. Soc. Jpn. 86, 043704 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Konishi.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konishi, E., Sato, S. & Morinari, T. Spin-density-wave-induced metal–insulator transition in two-band Hubbard model in application to the magnetic molecular conductor λ-(BETS)2FeCl4. Eur. Phys. J. B 93, 171 (2020). https://doi.org/10.1140/epjb/e2020-10203-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10203-6

Keywords

Navigation