Skip to main content
Log in

Electronic, magneto-optical and magnetic anisotropy properties of tetragonal BiFeO3

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The full potential linear augmented plane wave method including Hubbard potential and spin-orbit coupling are performed to study the structural, electronic, magneto-optical and magnetic anisotropy properties of tetragonal BiFeO3. Using the exchange correlations potentials generalized gradient plus Hubbard parameter (GGA + U) approximations are used for the description of electron-electron interactions. We studied first the structural properties which present a tetragonal distortion results from the stereochemical 6s2 lone pair of Bi+2 and the Jahn-Teller (JT) distortion effect of Fe+3 and the value of ca = 1.28. The calculated gap is 2.0 eV at Ueff = 4 eV. The magnetic moment of Fe in phase is 3.65 μB. Kerr and ellipticity are calculated by using a spin-orbit coupling and Hubbard potential which present a high angles values −1.0° and 1.5° respectivly. In plane uniaxial and fourfold anisotropy constants are determined from the fit curves of DFT calculation. We observed a predominance of uniaxial anisotopy on the fourdfold anisotropy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Qiao, S. Zhang, H.Y. Xiao, D.J. Singh, K.H. L. Zhang, Z.J. Liu, X.T. Zua, S. Lic, J. Mater. Chem. C 6, 1239 (2018)

    Article  Google Scholar 

  2. M. Yashima, K. Omoto, J. Chen, H. Kato, X. Xing, Chem. Mater. 23, 3135 (2011)

    Article  Google Scholar 

  3. E. Sagar, R. Mahesh, N.P. Kumar, P.V. Reddy, J. Phys. Chem. Sol. 110, 316 (2017)

    Article  ADS  Google Scholar 

  4. P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvåg, O. Eriksson, Phys. Rev. B 74, 224412 (2006)

    Article  ADS  Google Scholar 

  5. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719 (2003)

    Article  ADS  Google Scholar 

  6. L. Yin, W. Mi, Nanoscale 12, 477 (2020)

    Article  Google Scholar 

  7. H. Fan, Z. Fan, P. Li, F. Zhang, G. Tian, J. Yao, Z. Li, X. Song, D. Chen, B. Han, M. Zeng, S. Wu, Z. Zhang, M. Qin, X. Lu, J. Gao, Z. Lu, Z. Zhang, J. Dai, X. Gao, J. Liu, J. Mater. Chem. C 5, 3323 (2017)

    Article  Google Scholar 

  8. A. Castro, M.A. Martins, L.P. Ferreira, M. Godinho, P.M. Vilarinho, P. Ferreira, J. Mater. Chem. C 7, 7788 (2019)

    Article  Google Scholar 

  9. S. Zhang, H.Y. Xiao, S.M. Peng, G.X. Yang, Z.J. Liu, X.T. Zu, S. Li, D.J. Singh, L.W. Martin, L. Qiao, Phys. Rev. Appl 10, 044004 (2018)

    Article  ADS  Google Scholar 

  10. N. Wang, M. Li, H. Xiao, H. Gong, Z. Liu, X. Zu, L. Qiao, Phys. Chem. Chem. Phys. 21, 15097 (2019)

    Article  Google Scholar 

  11. M. Li, N. Wang, M. Jiang, H. Xiao, H. Zhang, Z. Liu, X. Zu, L. Qiao, J. Mater. Chem. C 7, 11029 (2019)

    Article  Google Scholar 

  12. M.Q. Cai, X. Tan, G.W. Yang, L.Q. Wen, L.L. Wang, W.Y. Hu, Y.G. Wang, J. Phys. Chem. C 112, 16638 (2008)

    Article  Google Scholar 

  13. H. Lu, G. Guo, Phys. Rev. B 100, 054443 (2019)

    Article  ADS  Google Scholar 

  14. J.T. Zhang, X.M. Lu, J. Zhou, H. Sun, J. Su, C.C. Ju, F.Z. Huang, J.S. Zhu, Appl. Phys. Lett. 100, 242413 (2012)

    Article  ADS  Google Scholar 

  15. C. Weingart, N. Spaldin, E. Bousquet, Phys. Rev. B. 86, 094413 (2012)

    Article  ADS  Google Scholar 

  16. P. Blaha, K. Schwarz, J. Luitz,Wien2k, A Full Potential Linearized Augmented Plane Wave Package for Calculating Crystal Properties (Kalheinz Schwarz, Techn. Universitat Wien, Austria)

  17. U. Von Barth, L. Hedin, J. Phys. C 5, 1629 (1972)

    Article  ADS  Google Scholar 

  18. H. Liu, P. Yang, K. Yao, K.P. Ong, P. Wu, J. Wang, Adv. Funct. Mater. 22, 937 (2012)

    Article  Google Scholar 

  19. T. Bae, A. Kovács, H.J. Zhao, J. Íñiguez, S. Yasui, T. Ichinose, H. Naganuma, Sci. Rep. 7, 46498 (2017)

    Article  ADS  Google Scholar 

  20. D. Ricinschi, K.-Y. Yun, M. Okuyama, J. Phys.: Condens. Matter. 18, L97 (2006)

    Google Scholar 

  21. Q.J. Wang, Q.H. Tan, Y.K. Liu, Comput. Mater. Sci. 105, 1 (2015)

    Article  Google Scholar 

  22. H. Ishizaki, H. Yamamoto, T. Nishikubo, Y. Sakai, S. Kawaguchi, K. Yokoyama, Y. Okimoto, S. Koshihara, T. Yamamoto, M. Azuma, Inorg. Chem. 58, 16059 (2019)

    Article  Google Scholar 

  23. N. Feng, W. Mi, X. Wang, Y. Cheng, U. Schwingenschlögl, ACS Appl. Mater. Interfaces 7, 10612 (2015)

    Article  Google Scholar 

  24. H. Yang, C. Jin, W.B. Mi, H.L. Bai, G.F. Chen, J. Appl. Phys. 112, 063925 (2012)

    Article  ADS  Google Scholar 

  25. H.M. Tütüncü, G.P. Srivastava, Phys. Rev. B 78, 235209 (2008)

    Article  ADS  Google Scholar 

  26. C. Himcinschi1, A. Bhatnagar, A. Talkenberger, M. Barchuk, D.R.T. Zahn, D. Rafaja, J. Kortus, M. Alexe, Appl. Phys. Lett. 106, 012908 (2015)

    Article  ADS  Google Scholar 

  27. P. Chen, N.J. Podraza, X.S. Xu, A. Melville, E. Vlahos, V. Gopalan, R. Ramesh, D.G. Schlom, J.L. Musfeldt, Appl. Phys. Lett. 96, 131907 (2010)

    Article  ADS  Google Scholar 

  28. P.J. Grundy, Mater. Sci. Technol. B 3, 568 (1994)

    Google Scholar 

  29. R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957)

    Article  ADS  Google Scholar 

  30. M. Mahdi, A. Djabri, M.M. Koc, R. Boukhalfa, M. Erkovan, Yu. Chumakov, F. Chemam, Mater. Sci. Poland 37, 182 (2019)

    Article  ADS  Google Scholar 

  31. A. Djabri, M. Mahdi, R. Boukhalfa, M. Erkovan, Y. Chumakov, F. Chemam, J. Supercond. Nov. Magn. 30, 3207 (2017)

    Article  Google Scholar 

  32. M. Kumar, T. Nautiyal, S. Auluck, Eur. Phys. J. B. 73, 423 (2010)

    Article  ADS  Google Scholar 

  33. P. Hansen, C. Clausen, G. Much, M. Rosenkranz, K. Witter, J. Appl. Phys. 66, 756 (1989)

    Article  ADS  Google Scholar 

  34. R. Vidya, P. Ravindran, A. Kjekshus, H. Fjellvåg, Phys. Rev. B 70, 184414 (2004)

    Article  ADS  Google Scholar 

  35. M. Farle, Rep. Prog. Phys. 61, 755 (1998)

    Article  ADS  Google Scholar 

  36. K. Lenz, Magnetische Anisotropie und Dämpfungsmechanismen in ultradünnen 3d-Ferromagneten: eine FMR-Studie, Free Universität of Berlin, 2005, Dissertation.de-Verlag

  37. Kh. Zakeri, Th. Kebe, J. Linder, M. Farle, J. Magn. Magn. Mater. 299, L1 (2006)

    Article  ADS  Google Scholar 

  38. F. Chemam, K. Lenz, W. Kuch, Appl. Phys. A. 92, 381 (2008)

    Article  ADS  Google Scholar 

  39. T. Shimada, K. Arisue, J. Wang, T. Kitamura, Phys. Rev. B 89, 245437 (2014)

    Article  ADS  Google Scholar 

  40. X. Ke, T. Birol, R. Misra, J.-H. Lee, B.J. Kirby, D.G. Schlom, C.J. Fennie, J.W. Freeland, Phys. Rev. B 88, 094434 (2013)

    Article  ADS  Google Scholar 

  41. X. Chen, D. Parker, K.P. Ong, M. Du, D.J. Singh, Appl. Phys. Lett. 102, 102403 (2013)

    Article  ADS  Google Scholar 

  42. J.M. Lucy, M.R. Ball, O.D. Restrepo, A.J. Hauser, J.R. Soliz, J.W. Freeland, P.M. Woodward, W. Windl, F.Y. Yang, Phys. Rev. B 90, 180401(R) (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faïçal Chemam.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djabri, A., Mahdi, M., Chemam, F. et al. Electronic, magneto-optical and magnetic anisotropy properties of tetragonal BiFeO3. Eur. Phys. J. B 93, 166 (2020). https://doi.org/10.1140/epjb/e2020-10190-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10190-6

Keywords

Navigation