Pressure effect on the mechanical and electronic properties of the tungsten triboride doped with iron: a first-principles study

Abstract

The crystal structure, mechanical, and electronic properties of W0.71Fe0.15B3 under pressure were studied by first principles. Our results show that the structural parameters obtained by geometry optimization are in agreement with other experimental and theoretical results; the main effect of pressure on the structure is compression along the c-axis. The independent elastic constants, mechanical modules, and the Debye temperature increase under pressure, whereas the hardness decreases. Born’s structural stability criteria shows that the structure with space group P63/mmc is mechanically stable up to 50 GPa; while, Pugh’s and Poisson criteria suggest a transition from brittle to ductile between 30 and 35 GPa. Finally, the density of states at the Fermi energy decreases and a charge transfer from W/Fe to B under pressure is determined.

Graphical abstract

This is a preview of subscription content, log in to check access.

References

  1. 1.

    P.A. Romans, M.P. Krug, Acta Cryst. 20, 313 (1966)

    Google Scholar 

  2. 2.

    R. Mohammadi, A.T. Lech, M. Xie, B.E. Weaver, M.T. Yeung, S.H. Tolbert, R.B. Kaner, PNAS 108, 10958 (2011)

    ADS  Google Scholar 

  3. 3.

    Q. Tao, D. Zheng, X. Zhao, Y. Chen, Q. Li, Q. Li, C. Wang, T. Cui, Y. Ma, X. Wang, P. Zhu, Chem. Mater. 26, 5297 (2014)

    Google Scholar 

  4. 4.

    X.Y. Cheng, X.Q. Chen, D.Z. Li, Y.Y. Li. Acta Cryst. C 70, 85 (2014)

    Google Scholar 

  5. 5.

    Y. Liang, X. Yuan, W. Zhang, Phys. Rev. B. 83, 220102(R) (2011)

    ADS  Google Scholar 

  6. 6.

    R.F. Zhang, D. Legut, Z.J. Lin, Y.S. Zhao, H.K. Mao, S. Veprek, Phys. Rev. Lett. 108, 255502 (2012)

    ADS  Google Scholar 

  7. 7.

    Y. Liang, Y. Gou, X. Yuan, Z. Zhong, W. Zhang, Chem. Phys. Lett. 580, 48 (2013)

    ADS  Google Scholar 

  8. 8.

    X. Cheng, W. Zhang, X.Q. Chen, H. Niu, P. Liu, K. Du, G. Liu, D. Li, H.M. Cheng, H. Ye, Y. Li, Appl. Phys. Lett. 103, 171903 (2013)

    ADS  Google Scholar 

  9. 9.

    A.T. Lech, C.L. Turner, R. Mohammadi, S.H. Tolbert, R.B. Kaner, PNAS 112, 3223 (2015)

    ADS  Google Scholar 

  10. 10.

    N.G. Szwacki, Sci. Rep. 7, 4082 (2017)

    ADS  Google Scholar 

  11. 11.

    J. León-Flores, M. Romero, J.A. Arenas-Alatorre, J. Rosas-Huerta, J.L. Pérez-Mazariego, R. Gómez, R. Escamilla, Physica B 583, 412026 (2020)

    Google Scholar 

  12. 12.

    J. Dong, H. Li, J. Wang, Z. Guo, J. Liao, X. Hao, X. Zhang, D. Chen, J. Phys. Chem. C 123, 29314 (2019)

    Google Scholar 

  13. 13.

    R. Mohammadi, C.L. Turner, M. Xie, M.T. Yeung, A.T. Lech, S.H. Tolbert, R.B. Kaner, Chem. Mater. 28, 632 (2016)

    Google Scholar 

  14. 14.

    R. Mohammadi, M. Xie, A.T. Lech, C.L. Turner, A. Kavner, S.H. Tolbert, R.B. Kaner, J. Am. Chem. Soc. 134, 20660 (2012)

    Google Scholar 

  15. 15.

    M. Xie, R. Mohammadi, C.L. Turner, R.B. Kaner, A. Kavner, S.H. Tolbert, Appl. Phys. Lett. 107, 041903 (2015)

    ADS  Google Scholar 

  16. 16.

    J.W. Simonson, D. Wu, S.J. Poon, S.A. Wolf, J. Supercond. Nov. Magn. 23, 417 (2010)

    Google Scholar 

  17. 17.

    C. Liu, F. Peng, N. Tan, J. Liu, F. Li, J. Qin, J. Wang, Q. Wang, D. He, High Press. Res. 31, 275 (2011)

    ADS  Google Scholar 

  18. 18.

    L. Xiong, J. Liu, L. Bai, C. Lin, D. He, X. Zhang, J.F. Lin, J. Alloys Compd. 621, 116 (2015)

    Google Scholar 

  19. 19.

    L. Xiong, J. Liu, L. Bai, Y. Li, C. Lin, D. He, F. Peng, J.F. Lin, J. Appl. Phys. 113, 033507 (2013)

    ADS  Google Scholar 

  20. 20.

    X. Li, Y. Tao, F. Peng, J. Alloys Compd. 687, 579 (2016)

    Google Scholar 

  21. 21.

    W. Bao, D. Liu, Y. Duan, Ceram. Int. 44, 14053 (2018)

    Google Scholar 

  22. 22.

    Z. Guo, X. Yang, Mater. Res. Express 6, 115034 (2019)

    ADS  Google Scholar 

  23. 23.

    D. Liu, W. Bao, Y. Duan, Ceram. Int. 45, 3341 (2019)

    Google Scholar 

  24. 24.

    P. Hohenberg, W. Kohn, Phys. Rev. 136, B86 (1964)

    Google Scholar 

  25. 25.

    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    ADS  Google Scholar 

  26. 26.

    M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys.: Condens. Matter 14, 2717 (2002)

    ADS  Google Scholar 

  27. 27.

    J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    ADS  Google Scholar 

  28. 28.

    D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    ADS  Google Scholar 

  29. 29.

    L. Nordheim, Ann. Phys. 401, 607 (1931)

    Google Scholar 

  30. 30.

    L. Bellaiche, D. Vanderbilt, Phys. Rev. B 61, 7877 (2000)

    ADS  Google Scholar 

  31. 31.

    M.A. Ali, M.M. Hossain, M.A. Hossain, M.T. Nasir, M.M. Uddin, M.Z. Hasan, A.K.M.A. Islam, S.H. Naqib, J. Alloys Compd. 743, 146 (2018)

    Google Scholar 

  32. 32.

    J. León-Flores, M. Romero, J.L. Rosas, R. Escamilla, Eur. Phys. J. B 92, 26 (2019)

    ADS  Google Scholar 

  33. 33.

    J. Yang, Y. Wang, J. Huang, W. Wang, Z. Ye, S. Chen, Y. Zhao, J. Alloys Compd. 755, 211 (2018)

    Google Scholar 

  34. 34.

    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    ADS  MathSciNet  Google Scholar 

  35. 35.

    R. Fletcher, inUnconstrained Optimization, Practical Methodsof Optimization (John Wiley & Sons, New York, 1980), Vol. 1

  36. 36.

    R.S. Mulliken, J. Chem. Phys. 23, 1833 (1955)

    ADS  Google Scholar 

  37. 37.

    M. Born, K. Hang,Dynamical theory and experiments I (Springer-Verlag Publishers, Berlin, 1982)

  38. 38.

    R. Hill, Proc. Phys. Soc. 65, 349 (1952)

    ADS  Google Scholar 

  39. 39.

    W. Voigt,Lehrbuch der Kristallphysik (Tubner, Leipzing, 1928)

  40. 40.

    A. Reuss, Z. Angew. Math. Mech. 9, 49 (1929)

    Google Scholar 

  41. 41.

    S.F. Pugh, Philos. Mag. 45, 823 (1954)

    Google Scholar 

  42. 42.

    I.N. Frantsevich, F.F. Voronov, S.A. Bokuta, inElastic constants and elastic moduli of metals and insulators handbook (Naukova Dumka, Kiev, 1983), pp. 60–180

  43. 43.

    D.G. Pettifor, J. Mater. Sci. Technol. 8, 345 (1992)

    Google Scholar 

  44. 44.

    X.Q. Chen, H. Niu, D. Li, Y. Li, Intermetallics 19, 1275 (2011)

    Google Scholar 

  45. 45.

    Y. Tian, B. Xu, Z. Zhao, Int. J. Refract. Met. H 33, 93 (2012)

    Google Scholar 

  46. 46.

    H. Niu, S. Niu, A.R. Oganov, J. Appl. Phys. 125, 065105 (2019)

    ADS  Google Scholar 

  47. 47.

    O.L. Anderson, J. Phys. Chem. Solids 24, 909 (1963)

    ADS  Google Scholar 

  48. 48.

    G.A. Slack, R.G. Ross, J. Phys. C: Solid State Phys. 18, 3957 (1985)

    ADS  Google Scholar 

  49. 49.

    D.R. Clarke, Surf. Coat. Tech. 163-164, 67 (2003)

    Google Scholar 

  50. 50.

    G.V. Samsonov,Handbook of the physicochemical properties of the elements (IFI-Plenum, New York, USA, 1968)

  51. 51.

    X.Y. Chong, Y.H. Jiang, R. Zhou, J. Feng, Ceram. Int. 42, 2117 (2016)

    Google Scholar 

  52. 52.

    Y. Mo, P. Rulis, W.Y. Ching, Phys. Rev. B 86, 165122 (2012)

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Raul Escamilla.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

León-Flores, J., Romero, M., Rosas-Huerta, J.L. et al. Pressure effect on the mechanical and electronic properties of the tungsten triboride doped with iron: a first-principles study. Eur. Phys. J. B 93, 178 (2020). https://doi.org/10.1140/epjb/e2020-10187-1

Download citation

Keywords

  • Computational Methods