Skip to main content
Log in

Anisotropic superexchange through nonmagnetic anions with spin-orbit coupling

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Anisotropic superexchange interaction is one of the most important interactions in realizing exotic quantum magnetism, which is traditionally regarded to originate from magnetic ions and has no relation with the nonmagnetic ions. In our work, by studying a multi-orbital Hubbard model with spin-orbit coupling on both magnetic cations and nonmagnetic anions, we analytically demonstrate that the spin-orbit coupling on nonmagnetic anions alone can induce antisymmetric Dzyaloshinskii-Moriya interaction, symmetric anisotropic exchange and single ion anisotropy on the magnetic ions and thus it actually contributes to anisotropic superexchange on an equal footing as that of magnetic ions. Our results promise one more route to realize versatile exotic phases in condensed matter systems, long-range orders in low dimensional materials and switchable single molecule magnetic devices for recording and manipulating quantum information through nonmagnetic anions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Witczak-Krempa, G. Chen, Y.B. Kim, L. Balents, Annu. Rev. Condens. Matter Phys. 5, 57 (2014)

    Article  ADS  Google Scholar 

  2. A. Bansil, H. Lin, T. Das, Rev. Mod. Phys. 88, 021004 (2016)

    Article  ADS  Google Scholar 

  3. Z. Nussinov, J. van den Brink, Rev. Mod. Phys. 87, 1 (2015)

    Article  ADS  Google Scholar 

  4. T. Moriya, Phys. Rev. 120, 91 (1960)

    Article  ADS  Google Scholar 

  5. P.W. Anderson, Phys. Rev. 115, 2 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  6. J. Kanamori, Prog. Theor. Phys. 30, 275 (1963)

    Article  ADS  Google Scholar 

  7. J.B. Goodenough, Phys. Rev. 171, 466 (1968)

    Article  ADS  Google Scholar 

  8. A. Kitaev, Ann. Phys. 321, 2 (2006)

    Article  ADS  Google Scholar 

  9. G. Chen, L. Balents, Phys. Rev. B 78, 094403 (2008)

    Article  ADS  Google Scholar 

  10. G. Jackeli, G. Khaliullin, Phys. Rev. Lett. 102, 017205 (2009)

    Article  ADS  Google Scholar 

  11. L. Chen, J.H. Chung, B. Gao, T. Chen, M.B. Stone, A.I. Kolesnikov, Q. Huang, P. Dai, Phys. Rev. X 8, 041028 (2018)

    Google Scholar 

  12. C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang et al., Nature 546, 265 (2017)

    Article  ADS  Google Scholar 

  13. K.L. Seyler, D. Zhong, D.R. Klein, S. Gao, X. Zhang, B. Huang, E. Navarro-Moratalla, L. Yang, D.H. Cobden, M.A. McGuire et al., Nat. Phys. 14, 277 (2018)

    Article  Google Scholar 

  14. C. Xu, J. Feng, H. Xiang, L. Bellaiche, npj Comput. Mater. 4, 57 (2018)

    Article  ADS  Google Scholar 

  15. J.L. Lado, J. Fernández-Rossier, 2D Mater. 4, 035002 (2017)

    Article  Google Scholar 

  16. B. Huang, G.H. Clark, E. Navarro-Moratalla, D.R. Klein, R. Cheng, K.L. Seyler, D. Zhong, E.R. Schmidgall, M.A. McGuire, D.H. Cobden et al., Nature 546, 270 (2017)

    Article  ADS  Google Scholar 

  17. N.D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966)

    Article  ADS  Google Scholar 

  18. S.M. Winter, A.A. Tsirlin, M. Daghofer, J. van den Brink, Y. Singh, P. Gegenwart, R. Valentí, J. Phys.: Condens. Matter 29, 493002 (2017)

    Google Scholar 

  19. A. Fert, P.M. Levy, Phys. Rev. Lett. 44, 1538 (1980)

    Article  ADS  Google Scholar 

  20. H. Imamura, P. Bruno, Y. Utsumi, Phys. Rev. B 69, 121303 (2004)

    Article  ADS  Google Scholar 

  21. T. Yildirim, A.B. Harris, A. Aharony, O. Entin-Wohlman, Phys. Rev. B 52, 10239 (1995)

    Article  ADS  Google Scholar 

  22. J. Chang, J. Zhao, Eur. Phys. J. B 90, 154 (2017)

    Article  ADS  Google Scholar 

  23. M. Takahashi, J. Phys. C 10, 1289 (1977)

    Article  ADS  Google Scholar 

  24. F. Wang, T. Senthil, Phys. Rev. Lett. 106, 136402 (2011)

    Article  ADS  Google Scholar 

  25. Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Chang.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, J., Zhao, J. & Ding, Y. Anisotropic superexchange through nonmagnetic anions with spin-orbit coupling. Eur. Phys. J. B 93, 159 (2020). https://doi.org/10.1140/epjb/e2020-10142-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10142-2

Keywords

Navigation