Skip to main content
Log in

Survival of current in a periodically driven hard-core bosonic system

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the survival of the current induced initially by applying a twist at the boundary of a chain of hard-core bosons (HCBs), subject to a periodic double δ-function kicks in the staggered on-site potential. We study the current flow and the work-done on the system at the long-time limit as a function of the driving frequency. Like a recent observation in the HCB chain with single δ-function kick in the staggered on-site potential, here we also observe many dips in the current flow and concurrently many peaks in the work-done on the system at some specific values of the driving frequency. However, unlike the single kicked case, here we do not observe a complete disappearance of the current in the limit of a high driving frequency, which shows the absence of any dynamical localization in the double δ-functions kicked HCB chain. Our analytical estimations of the saturated current and the saturated work-done, defined at the limit of a large time together with a high driving frequency, match very well with the exact numerics. In the case of the very small initial current, induced by a very small twist ν, we observe that the saturated current is proportional to ν. Finally, we study the time-evolution of the half-filled HCB chain where the particles are localized in the central part of the chain. We observe that the particles spread linearly in a light-cone like region at the rate determined by the maximum value of the group velocity. Except for a very trivial case, the maximum group velocity never vanishes, and therefore we do not observe any dynamical localization in the system.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.L. Moore, J.C. Robinson, C.F. Bharucha, Bala Sundaram, M.G. Raizen, Phys. Rev. Lett. 75, 4598 (1995)

    ADS  Google Scholar 

  2. H. Ammann, R. Gray, I. Shvarchuck, N. Christensen, Phys. Rev. Lett. 80, 4111 (1998)

    ADS  Google Scholar 

  3. J. Ringot, P. Szriftgiser, J.C. Garreau, D. Delande, Phys. Rev. Lett. 85, 2741 (2000)

    ADS  Google Scholar 

  4. M.B. d’Arcy, R.M. Godun, M.K. Oberthaler, D. Cassettari, G.S. Summy, Phys. Rev. Lett. 87, 074102 (2001)

    ADS  Google Scholar 

  5. C. Ryu, M.F. Andersen, A. Vaziri, M.B. d’Arcy, J.M. Grossman, K. Helmerson, W.D. Phillips, Phys. Rev. Lett. 96, 160403 (2006)

    ADS  Google Scholar 

  6. M. Sadgrove, M. Horikoshi, T. Sekimura, K. Nakagawa, Phys. Rev. Lett. 99, 043002 (2007)

    ADS  Google Scholar 

  7. I. Dana, V. Ramareddy, I. Talukdar, G.S. Summy, Phys. Rev. Lett. 100, 024103 (2008)

    ADS  Google Scholar 

  8. L. Allen, J.H. Eberly,Optical Resonance and Two-level Atoms (Dover Publications, 1987)

  9. B.V. Chirikov, F.M. Izrailev, D.L. Shepelyansky, Sov. Sci. Rev. C 2, 209 (1981)

    Google Scholar 

  10. S. Fishman, D.R. Grempel, R.E. Prange, Phys. Rev. Lett. 49, 509 (1982)

    ADS  MathSciNet  Google Scholar 

  11. P.L. Kapitza, Sov. Phys. JETP 21, 588 (1951)

    Google Scholar 

  12. H.W. Broer, I. Hoveijn, M. van Noort, C. Simon, G. Vegter, J. Dyn. Diff. Eqn. 16, 897 (2004)

    Google Scholar 

  13. K. Watanabe, K. Yasumoto, PIER 74, 271 (2007)

    Google Scholar 

  14. T. Oka, H. Aoki, Phys. Rev. B 79, 081406 (2009)

    ADS  Google Scholar 

  15. T. Oka, S. Kitamura, Annu. Rev. Cond. Matter. Phys. 10, 387 (2019)

    ADS  Google Scholar 

  16. T. Kitagawa, T. Oka, A. Brataas, L. Fu, E. Demler, Phys. Rev. B 84, 235108 (2011)

    ADS  Google Scholar 

  17. Z. Gu, H.A. Fertig, D.P. Arovas, A. Auerbach, Phys. Rev. Lett. 107, 216601 (2011)

    ADS  Google Scholar 

  18. E.S. Morell, L.E.F. Foa Torres, Phys. Rev. B 86, 125449 (2012)

    ADS  Google Scholar 

  19. T. Iadecola, D. Campbell, C. Chamon, C.-Y. Hou, R. Jackiw, S.-Y. Pi, S.V. Kusminskiy, Phys. Rev. Lett. 110, 176603 (2013)

    ADS  Google Scholar 

  20. P. Delplace, Á. Ǵomez-León, G. Platero, Phys. Rev. B 88, 245422 (2013)

    ADS  Google Scholar 

  21. P.M. Perez-Piskunow, G. Usaj, C.A. Balseiro, L.E.F.F. Torres, Phys. Rev. B 89, 121401 (2014)

    ADS  Google Scholar 

  22. G. Usaj, P.M. Perez-Piskunow, L.E.F. Foa Torres, C.A. Balseiro, Phys. Rev. B 90, 115423 (2014)

    ADS  Google Scholar 

  23. P.M. Perez-Piskunow, L.E.F. Foa Torres, G. Usaj, Phys. Rev. A 91, 043625 (2015)

    ADS  Google Scholar 

  24. M. Sentef, M. Claassen, A. Kemper, B. Moritz, T. Oka, J. Freericks, T. Devereaux, Nat. Commun. 6, 7047 (2015)

    ADS  Google Scholar 

  25. M. Bukov, L. D’Alesio, A. Polkovnikov, Adv. Phys. 64, 139 (2015)

    ADS  Google Scholar 

  26. B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac, G.V. Shlyapnikov, T.W. Hänsch, I. Bloch, Nature (London) 429, 277 (2004)

    ADS  Google Scholar 

  27. T. Kinoshita, T. Wenger, D.S. Weiss, Science 305, 1125 (2004)

    ADS  Google Scholar 

  28. M.A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, M. Rigol, Rev. Mod. Phys. 83, 1405 (2011)

    ADS  Google Scholar 

  29. T. Nag, S. Roy, A. Dutta, D. Sen, Phys. Rev. B 89, 165425 (2014)

    ADS  Google Scholar 

  30. T. Nag, D. Sen, A. Dutta, Phys. Rev. A 91, 063607 (2015)

    ADS  Google Scholar 

  31. H.-J. Stöckman,Quantum chaos: an introduction (Cambridge University Press, 2007)

  32. F. Haake,Quantum signatures of chaos, 3rd edn. (Springer, 2010)

  33. J.N. Bandyopadhyay, T.G. Sarkar, Phys. Rev. E 91, 032923 (2015)

    ADS  Google Scholar 

  34. N. Goldman, J. Dalibard, Phys. Rev. X 4, 031027 (2014)

    Google Scholar 

  35. J. Wang, J. Gong, Phys. Rev. A 77, 031405(R) (2008)

    ADS  Google Scholar 

  36. J. Wang, J. Gong, Phys. Rev. Lett. 102, 244102 (2009)

    ADS  Google Scholar 

  37. J. Wang, J. Gong, Phys. Rev. E 81, 026204 (2010)

    ADS  Google Scholar 

  38. J.N. Bandyopadhyay, J. Wang, J. Gong, Phys. Rev. E 81, 066212 (2010)

    ADS  Google Scholar 

  39. J.N. Bandyopadhyay, J. Gong, Eur. Phys. J. B 85, 335 (2012)

    ADS  Google Scholar 

  40. R.J. Sharma, T.G. Sarkar, J.N. Bandyopadhyay, Phys. Rev. E 98, 042217 (2018)

    ADS  Google Scholar 

  41. C.E. Creffield, G. Pieplow, F. Sols, N. Goldman, New J. Phys. 18, 093013 (2016)

    ADS  Google Scholar 

  42. E. Lieb, T. Schultz, D. Mattis, Ann. Phys. (N.Y.) 16, 407 (1961)

    ADS  Google Scholar 

  43. I. Klich, C. Lannert, G. Refael, Phys. Rev. Lett. 99, 205303 (2007)

    ADS  Google Scholar 

  44. A. Russomanno, A. Silva, G.E. Santoro, Phys. Rev. Lett. 109, 257201 (2012)

    ADS  Google Scholar 

  45. U. Bhattacharya, S. Maity, U. Banik, A. Dutta, Phys. Rev. B 97, 184308 (2018)

    ADS  Google Scholar 

  46. S. Maity, U. Bhattacharya, A. Dutta, Phys. Rev. B 98, 064305 (2018)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayendra N. Bandyopadhyay.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R.J., Bandyopadhyay, J.N. Survival of current in a periodically driven hard-core bosonic system. Eur. Phys. J. B 93, 89 (2020). https://doi.org/10.1140/epjb/e2020-10133-3

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10133-3

Keywords

Navigation