Skip to main content

Vibrational and magnetic signatures of extended defects in Fe

Abstract

Defects change the phonon spectrum and also the magnetic properties of bcc-Fe. Using molecular dynamics simulation, the influence of defects – vacancies, dislocations, and grain boundaries – on the phonon spectra and magnetic properties of bcc-Fe is determined. It is found that the main influence of defects consists in a decrease of the amplitude of the longitudinal peak, PL, at around 37 meV. While the change in phonon spectra shows only little dependence on the defect type, the quantitative decrease of PL is proportional to the defect concentration. Local magnetic moments can be determined from the local atomic volumes. Again, the changes in the magnetic moments of a defective crystal are linear in the defect concentrations. In addition, the change of the phonon density of states and the magnetic moments under homogeneous uniaxial strain are investigated.

Graphical abstract

References

  1. P.L. Land, B. Goodman, J. Phys. Chem. Solids 28, 113 (1967)

    ADS  Google Scholar 

  2. G. Leibfried, N. Breuer, Point defects in metals I: Introduction to the theory, Springer Tracts in Modern Physics (Springer, Berlin, 1978), Vol. 81

  3. P.H. Dederichs, R. Zeller, in Point defects in metals II: Dynamical properties and diffusion controlled reactions, Springer Tracts in Modern Physics (Springer, Berlin, 1980), Vol. 87, pp. 1–170

  4. R. Yamamoto, K. Haga, M. Doyama, J. Phys. Soc. Jpn. 48, 341 (1980)

    ADS  Google Scholar 

  5. S.S. Pohlong, P.N. Ram, J. Phys.: Condens. Matter 10, 10901 (1998)

    ADS  Google Scholar 

  6. A.E. Carlsson, Solid State Phys. 43, 1 (1990)

    Google Scholar 

  7. A.N. Kislov, V.G. Mazurenko, Inorganic Mater. 39, 1280 (2003)

    Google Scholar 

  8. M.W. Finnis, J.E. Sinclair, Philos. Mag. A 50, 45 (1984) [Erratum: Philos. Mag. A 53, 161 1986]

    ADS  Google Scholar 

  9. V. Gairola, P.D. Semalty, P.N. Ram, Pramana 80, 1041 (2013)

    ADS  Google Scholar 

  10. M.C. Marinica, F. Willaime, Solid State Phenomena 129, 67 (2007)

    Google Scholar 

  11. G. Lucas, R. Schäublin, Nucl. Instrum. Methods B 267, 3009 (2009)

    ADS  Google Scholar 

  12. P.M. Derlet, R. Meyer, L.J. Lewis, U. Stuhr, H. Van Swygenhoven, Phys. Rev. Lett. 87, 205501 (2001)

    ADS  Google Scholar 

  13. R. Meyer, L.J. Lewis, S. Prakash, P. Entel, Phys. Rev. B 88, 104303 (2003)

    ADS  Google Scholar 

  14. W. Pepperhoff, M. Acet,Constitution and Magnetism of Iron and its Alloys (Springer, Berlin, 2001)

  15. C. Domain, C.S. Becquart, Phys. Rev. B 65, 024103 (2001)

    ADS  Google Scholar 

  16. C.-C. Fu, F. Willaime, P. Ordejón, Phys. Rev. Lett. 92, 175503 (2004)

    ADS  Google Scholar 

  17. L. Malerba, M.C. Marinica, N. Anento, C. Björkas, H. Nguyen, C. Domain, F. Djurabekova, P. Olsson, K. Nordlund, A. Serra, et al., J. Nucl. Mater. 406, 19 (2010)

    ADS  Google Scholar 

  18. K. Hampel, D.D. Vvedensky, S. Crampin, Phys. Rev. B 47, 4810 (1993)

    ADS  Google Scholar 

  19. M. Sob, I. Turek, L. Wang, V. Vitek, inProc. Int. Conf. METAL 2001, edited by J. Kupka (Ostrava, 2001), p. 111

  20. M. Cak, M. Sob, J. Hafner, Phys. Rev. B 78, 054418 (2008)

    ADS  Google Scholar 

  21. N. Gao, C.-C. Fu, M. Samaras, R. Schäublin, M. Victoria, W. Hoffelner, J. Nucl. Mater. 385, 262 (2009)

    ADS  Google Scholar 

  22. E. Bonetti, L. Del Bianco, D. Fiorani, D. Rinaldi, R. Caciuffo, A. Hernando, Phys. Rev. Lett. 83, 2829 (1999)

    ADS  Google Scholar 

  23. S. Ii, K. Hirayama, K. Matsunaga, H. Fujii, S. Tsurekawa, Scr. Mater. 68, 253 (2013)

    Google Scholar 

  24. K. Hirayama, S. Ii, S. Tsurekawa, Scr. Mater. 69, 823 (2013)

    Google Scholar 

  25. A. Mutter, B. Wang, J. Meiser, P. Umstätter, H.M. Urbassek, Philos. Mag. 48, 3027 (2017)

    ADS  Google Scholar 

  26. S. Chiesa, P.M. Derlet, S.L. Dudarev, H. Van Swygenhoven, J. Phys.: Condens. Matter 23, 206001 (2011)

    ADS  Google Scholar 

  27. B. Wang, Y. Gao, H.M. Urbassek, Phys. Rev. B 48, 104105 (2014)

    ADS  Google Scholar 

  28. J. Meiser, H.M. Urbassek, Metals 48, 90 (2019)

    Google Scholar 

  29. I. Alabd Alhafez, C.J. Ruestes, E.M. Bringa, H.M. Urbassek, J. Mech. Phys. Solids 48, 103674 (2019)

    ADS  Google Scholar 

  30. N. Gunkelmann, E.M. Bringa, K. Kang, G.J. Ackland, C.J. Ruestes, H.M. Urbassek, Phys. Rev. B 48, 144111 (2012)

    ADS  Google Scholar 

  31. P. Hirel, Comput. Phys. Commun. 48, 212 (2015)

    ADS  Google Scholar 

  32. M. Mikolasek, W. Nicolazzi, F. Terki, G. Molnár, A. Bousseksou, Phys. Rev. B 48, 035427 (2017)

    ADS  Google Scholar 

  33. G.J. Ackland, D.J. Bacon, A.F. Calder, T. Harry, Philos. Mag. A 48, 713 (1997)

    ADS  Google Scholar 

  34. S. Plimpton, J. Comput. Phys. 48, 1 (1995)

    ADS  Google Scholar 

  35. A. Stukowski, Model. Simul. Mater. Sci. Eng. 48, 015012 (2010)

    ADS  Google Scholar 

  36. B.N. Brockhouse, H.E. Abou-Helal, E.D. Hallman, Solid State Commun. 5, 211 (1967)

    ADS  Google Scholar 

  37. V.J. Minkiewicz, G. Shirane, R. Nathans, Phys. Rev. 48, 528 (1967)

    ADS  Google Scholar 

  38. Landolt-Börnstein,Metals: Phonon States, Electron States and Fermi Surfaces, New Series, Group III (Springer, Berlin, 1981), Vol. 13

  39. D. Hull, D.J. Bacon,Introduction to Dislocations, 5th edn. (Butterworth-, Kidlington, UK, 2011)

  40. W. Cai, W.D. Nix,Imperfections in crystalline solids (Cambridge University Press, Cambridge, 2016)

  41. E. Bonetti, L. Pasquini, E. Sampaolesi, A. Deriu, G. Cicognani, J. Appl. Phys. 48, 4571 (2000)

    ADS  Google Scholar 

  42. H. Van Swygenhoven, M. Spaczer, A. Caro, D. Farkas, Phys. Rev. B 48, 22 (1999)

    ADS  Google Scholar 

  43. P.M. Derlet, S.L. Dudarev, Prog. Mater. Sci. 48, 299 (2007)

    Google Scholar 

  44. L. Zhang, M. Sob, Z. Wu, Y. Zhang, G.-H. Lu, J. Phys.: Condens. Matter 48, 086002 (2014)

    Google Scholar 

  45. S.L. Dudarev, P.M. Derlet, J. Phys.: Condens. Matter 48, 7097 (2005) [Erratum: J. Phys.: Condens. Matter 48, 239001 2007]

    ADS  Google Scholar 

  46. S.L. Dudarev, P.M. Derlet, J. Comput. Aided Mater. Des. 48, 129 (2007)

    ADS  Google Scholar 

  47. H.J. Wollenberger, inPhysical Metallurgy, Pt. 2, edited by R.W. Cahn, P. Haasen (North-Holland, Amsterdam, 1983), Chap. 17

  48. H. Chamati, N.I. Papanicolaou, Y. Mishin, D.A. Papaconstantopoulos, Surf. Sci. 48, 1793 (2006)

    ADS  Google Scholar 

  49. S.A. Etesami, E. Asadi, J. Phys. Chem. Solids 48, 61 (2018)

    ADS  Google Scholar 

  50. M.I. Mendelev, S. Han, D.J. Srolovitz, G.J. Ackland, D.Y. Sun, M. Asta, Philos. Mag. 48, 3977 (2003)

    Google Scholar 

  51. R. Meyer, P. Entel, Phys. Rev. B 48, 5140 (1998)

    ADS  Google Scholar 

  52. P.A.T. Olsson, Comput. Mater. Sci. 47, 135 (2009)

    Google Scholar 

  53. L. Proville, D. Rodney, M.-C. Marinica, Nat. Mater. 48, 845 (2012)

    ADS  Google Scholar 

  54. M.-C. Marinica, F. Willaime, J.-P. Crocombette, Phys. Rev. Lett. 48, 025501 (2012)

    ADS  Google Scholar 

  55. M.G. Kresch, Temperature dependence of phonons in elemental cubic metals studied by inelastic scattering of neutrons and X-rays, Ph.D. thesis, California Institute of Technology Pasadena, California, 2009

  56. M. Talati, M. Posselt, G. Bonny, A. Al-Motasem, F. Bergner, J. Phys.: Condens. Matter 48, 225402 (2012)

    ADS  Google Scholar 

  57. D. Dragoni, D. Ceresoli, N. Marzari, Comput. Mater. Sci. 48, 99 (2018)

    Google Scholar 

  58. Y. Ouyang, X. Tong, C. Li, H. Chen, X. Tao, T. Hickel, Y. Du, Physica B 48, 4530 (2012)

    ADS  Google Scholar 

  59. M. Marchese, G. Jacucci, C.P. Flynn, Philos. Mag. Lett. 48, 25 (1988)

    ADS  Google Scholar 

  60. G.J. Ackland, M.I. Mendelev, D.J. Srolovitz, S. Han, A.V. Barashev, J. Phys.: Condens. Matter 48, S2629 (2004)

    Google Scholar 

  61. V.L. Moruzzi, P.M. Marcus, P.C. Pattnaik, Phys. Rev. B 48, 8003 (1988)

    ADS  Google Scholar 

  62. H.C. Herper, E. Hoffmann, P. Entel, Phys. Rev. B 48, 3839 (1999)

    ADS  Google Scholar 

Download references

Acknowledgments

Open access funding provided by Projekt DEAL

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert M. Urbassek.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meyer, R., Mutter, A., Umstätter, P. et al. Vibrational and magnetic signatures of extended defects in Fe. Eur. Phys. J. B 93, 116 (2020). https://doi.org/10.1140/epjb/e2020-10111-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10111-9

Keywords

  • Solid State and Materials