Skip to main content
Log in

Transition kinetics of impurity doped quantum dots under time-dependent confinement potential: role of noise

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Present study endeavors to analyze the role of Gaussian white noise and fluctuating confinement potential on time-average excitation rate (TAER) of impurity doped quantum dot (QD). The TAER profiles are exhaustively monitored as a number of physical quantities are varied over a range with and without noise. Application of noise to the system takes place in two different pathways known as ‘additive’ and ‘multiplicative’. And the fluctuation of the confinement potential has been considered to be cosinusoidal and random which induces the excitation of ground state electronic population to the higher states. The TAER profiles comprise of features like steady increase/decrease, maximization, minimization and saturation. However, the specific characteristics of a particular profile depend on presence/absence of noise, the noise mode, the nature of fluctuating confinement potential and the identity of the physical quantity being varied. Production of large TAER of doped QD depends on noise-mode and nature of fluctuating confinement potential based on which the noise strength is required to be maintained in the vicinity of some typical values.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Taş, M. Şahin, J. Appl. Phys. 112, 053717 (2012)

    ADS  Google Scholar 

  2. Y. Yakar, B. Çakir, A. Özmen, Chem. Phys. Lett. 708, 138 (2018)

    ADS  Google Scholar 

  3. W. Xie, Physica B 405, 3436 (2010)

    ADS  Google Scholar 

  4. L. He, W. Xie, Superlatt. Microstruct. 47, 266 (2010)

    ADS  Google Scholar 

  5. R. Khordad, H. Bahramiyan, Physica E 66, 107 (2015)

    ADS  Google Scholar 

  6. S. Baskoutas, E. Paspalakis, A.F. Terzis, J. Phys.: Condens. Matter 19, 395024 (2007)

    Google Scholar 

  7. I. Karabulut, S. Baskoutas, J. Appl. Phys. 103, 073512 (2008)

    ADS  Google Scholar 

  8. I. Karabulut, S. Baskoutas, J. Computat. Theor. Nanosci. 6, 153 (2009)

    Google Scholar 

  9. G. Rezaei, M.R.K. Vahdani, B. Vaseghi, Curr. Appl. Phys. 11, 176 (2011)

    ADS  Google Scholar 

  10. C.A. Duque, M.E. Mora-Ramos, E. Kasapoglu, F. Ungan, U. Yesilgul, S. Sakiroglu, H. Sari, I. Sökmen, J. Lumin. 143, 304 (2013)

    Google Scholar 

  11. E. Kasapoglu, F. Ungan, H. Sari, I. Sökmen, M.E. Mora-Ramos, C.A. Duque, Superlatt. Microstruct. 73, 171 (2014)

    ADS  Google Scholar 

  12. M. Kirak, S. Yilmaz, M. Şahin, M. Gencaslan, J. Appl. Phys. 109, 094309 (2011)

    ADS  Google Scholar 

  13. V.N. Mughnetsyan, M.G. Barseghyan, A.A. Kirakosyan, J. Contemp. Phys. 42, 287 (2007)

    Google Scholar 

  14. A.F. Terzis, S. Baskoutas, J. Phys.: Conf. Ser. 10, 77 (2005)

    ADS  Google Scholar 

  15. E.C. Niculescu, C. Stan, C.M. Cristea, C. Truscă, Chem. Phys. 493, 32 (2017)

    Google Scholar 

  16. C.M. Duque, M.G. Barseghyan, C.A. Duque, Eur. Phys. J. B 73, 309 (2010)

    ADS  Google Scholar 

  17. G. Rezaei, B. Vaseghi, F. Taghizadeh, M.R.K. Vahdani, M.J. Karimi, Superlatt. Microstruct. 48, 450 (2010)

    ADS  Google Scholar 

  18. L. Lu, W. Xie, H. Hassanabadi, J. Appl. Phys. 109, 063108 (2011)

    ADS  Google Scholar 

  19. I. Karabulut, Ü. Atav, H. Şafak, M. Tomak, Eur. Phys. J. B 55, 283 (2007)

    ADS  Google Scholar 

  20. I. Karabulut, Ü. Atav, H. Şafak, M. Tomak, Physica B 393, 133 (2007)

    ADS  Google Scholar 

  21. H. El. Ghazi, A. Jorio, I. Zorkani, Superlatt. Microstruct. 71, 211 (2014)

    ADS  Google Scholar 

  22. L. Bouzaiene, R.B. Mehrsia, M. Baria, L. Sfaxi, H. Maaref, J. Lumin. 135, 271 (2013)

    Google Scholar 

  23. M. Kirak, S. Yilmaz, Ü. Temizer, J. Nanoelectr. Optoelectr. 8, 165 (2013)

    Google Scholar 

  24. E.C. Niculescu, Mod. Phys. Lett. B 15, 545 (2001)

    ADS  Google Scholar 

  25. M. Cristea, A. Radu, E.C. Niculescu, J. Lumin. 143, 592 (2013)

    Google Scholar 

  26. L. Bouzaiene, H. Alamri, H.L. Sfaxi, H. Maaref, J. Alloys Compd. 655, 172 (2016)

    Google Scholar 

  27. B. Çakir, Y. Yakar, A. Özmen, J. Lumin. 132, 2659 (2012)

    Google Scholar 

  28. B. Li, K.X. Guo, Z.-L. Liu, Y.B. Zheng, Phys. Lett. A. 372, 1337 (2008)

    ADS  Google Scholar 

  29. G. Liu, K.X. Guo, H. Hassanabadi, L. Lu, Physica B 407, 3676 (2012)

    ADS  Google Scholar 

  30. A. Hakimyfard, M.G. Barseghyan, A.A. Kirakosyan, Physica E 41, 1596 (2009)

    ADS  Google Scholar 

  31. C.A. Duque, N. Porras-Montenegro, Z. Barticevic, M. Pacheco, L.E. Oliveira, J. Phys.: Condens. Matter 18, 1877 (2006)

    ADS  Google Scholar 

  32. Y. Yakar, B. Çakir, A. Özmen, Chem. Phys. 513, 213 (2018)

    Google Scholar 

  33. U. Yesilgul, H. Sari, F. Ungan, J.C. Martínez-Orozco, R.L. Restrepo, M.E. Mora-Ramos, C.A. Duque, I. Sökmen, Chem. Phys. 485–486, 81 (2017)

    Google Scholar 

  34. M. Kirak, Y. Altinok, Eur. Phys. J. B 85, 344 (2012)

    ADS  Google Scholar 

  35. K.M. Kumar, A.J. Peter, C.W. Lee, Eur. Phys. J. B 84, 431 (2011)

    ADS  Google Scholar 

  36. E. Paspalakis, A.F. Terzis, inProceedings of the 5-th WSEAS International Conference on Microelectronics, Nanoelectronics, Optoelectronics, Prague, Czech Republic, March 12-14 (2006), pp. 44–49

  37. E. Paspalakis, A. Kalini, A.F. Terzis, Phys. Rev. B 73, 073305 (2006)

    ADS  Google Scholar 

  38. E. Paspalakis, C. Simserides, A.F. Terzis, AIP Conf. Proc. 963, 533 (2007)

    ADS  Google Scholar 

  39. S. Rajashabala, K. Navaneethakrishnan, Superlatt. Microstruct. 43, 247 (2008)

    ADS  Google Scholar 

  40. S. Rajashabala, K. Navaneethakrishnan, Mod. Phys. Lett. B 20, 1529 (2006)

    ADS  Google Scholar 

  41. A.J. Peter, K. Navaneethakrishnan, Physica E 40, 2747 (2008)

    ADS  Google Scholar 

  42. R. Khordad, Physica E 42, 1503 (2010)

    ADS  Google Scholar 

  43. R. Khordad, Physica B 406, 3911 (2011)

    ADS  Google Scholar 

  44. X.-H. Qi, X.-J. Kang, J.-J. Liu, Phys. Rev. B 58, 10578 (1998)

    ADS  Google Scholar 

  45. A.J. Peter, Int. J. Mod. Phys. B 26, 5109 (2009)

    ADS  Google Scholar 

  46. Y.-X. Li, J.-J. Liu, X.-J. Kang, J. Appl. Phys. 88, 2588 (2000)

    ADS  Google Scholar 

  47. Y. Naimi, J. Vahedi, M.R. Soltani, Opt. Quantum Electron. 47, 2947 (2015)

    Google Scholar 

  48. M. Köksal, E. Kilicarslan, H. Sari, I. Sökmen, Physica B 404, 3850 2009)

    ADS  Google Scholar 

  49. Z.-Y. Deng, J.-K. Guo, T.-R. Lai, Phys. Rev. B 50, 5736 (1994)

    ADS  Google Scholar 

  50. W. Xie, Superlatt. Microstruct. 53, 49 (2013)

    ADS  Google Scholar 

  51. W. Xie, Physica B 407, 4588 (2012)

    ADS  Google Scholar 

  52. Gh. Safarpour, M.A. Izadi, M. Novzari, E. Niknam, M. Moradi, Physica E 59, 124 (2014)

    ADS  Google Scholar 

  53. Gh. Safarpour, M.A. Izadi, M. Novzari, S. Yazdanpanahi, Superlatt. Microstruct. 75, 936 (2014)

    ADS  Google Scholar 

  54. H.D. Karki, S. Elagöz, P. Başer, Superlatt. Microstruct. 48, 298 (2010)

    ADS  Google Scholar 

  55. L. Lu, W. Xie, Z. Shu, Physica B 406, 3735 (2011)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manas Ghosh.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, A., Arif, S.M., Bera, A. et al. Transition kinetics of impurity doped quantum dots under time-dependent confinement potential: role of noise. Eur. Phys. J. B 93, 91 (2020). https://doi.org/10.1140/epjb/e2020-10102-x

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10102-x

Keywords

Navigation