Skip to main content
Log in

Tuning structural and electronic properties of two dimensional Si and Ge based random alloys: an ab initio study

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

By plane-wave pseudopotential techniques we simulated structural and electronic properties of novel two-dimensional (2D) materials composed of Si and Ge randomly placed at the lattice sites of a honeycomb structure: 2D-Si1−xGex, and 2D-(H@Si)1−x(Ge@H)x, the corresponding H-passivated alloy. We investigated the formation of a random network of Si and Ge in 2D-honeycomb structure and proved the thermal stability of H-passivated SiGe alloy by computing the formation energy of these 2D-compounds. The 2D-Si1−xGex random alloy is a semi-metal and presents at the Fermi energy a density of states resembling the one produced by the Dirac’s cone of silicene and germanene, suggesting the possibility to induce, in 2D-Si1−xGex Dirac’s cone, a population of high velocity carriers that behaves like massless Dirac fermions. The 2D-(H@Si)1−x(Ge@H)x random alloy is a semiconductor and presents a tunable direct bandgap that doubles by decreasing the concentration from x = 1 to x = 0.25, making this 2D-alloy suitable for opto-electronic applications. The lattice parameter of both 2D-alloys increases linearly with Ge concentration, thus providing a microscopic mechanism to engineer the lattice parameter and/or the electronic properties of 2D-heterostructures based on these 2D-materials. The study of elastic properties of 2D-@Si1−xGex and 2D-(H@Si)1−x(Ge@H)x as a function of x for possible use in flexible electronics and the investigation of magnetic properties of partially H-passivated 2D-(H@Si)1−xGex random alloy for concentration close to x = 0.5 for spintronic applications complete the work.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Cahangirov, H. Sahin, G. Le Lay, A. Rubio,Introduction to the Physics of Silicene and other 2D Materials (Springer, Berlin, 2017)

  2. A. Dimoulas, Microelectron. Eng. 131, 68 (2015)

    Google Scholar 

  3. K. Takeda, K. Shiraishi, Phys. Rev. B 50, 14916 (1994)

    ADS  Google Scholar 

  4. S. Cahangirov, M. Topsakal, E. Aktürk, H. Sahin, S. Ciraci, Phys. Rev. Lett. 102, 236804 (2009)

    ADS  Google Scholar 

  5. S. Cahangirov, M. Audiffred, P. Tang, A. Iacomino, W. Duan, G. Merino, A. Rubio, Phys. Rev. B 88, 035432 (2013)

    ADS  Google Scholar 

  6. M. Ferri, G. Fratesi, G. Onida, A. Debernardi, Micro and Nano Engineering 1, 37 (2018)

    Google Scholar 

  7. M. Ferri, G. Fratesi, G. Onida, A. Debernardi, Phys. Rev. B 99, 085414 (2019)

    ADS  Google Scholar 

  8. P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Phys. Rev. Lett. 108, 155501 (2012)

    ADS  Google Scholar 

  9. P.M. Sheverdyaeva, S. Kr. Mahatha, P. Moras, L. Petaccia, G. Fratesi, G. Onida, C. Carbone, ACS Nano 11, 975 (2017)

    Google Scholar 

  10. E. Cinquanta, G. Fratesi, S. dal Conte, C. Grazianetti, F. Scotognella, S. Stagira, C. Vozzi, G. Onida, A. Molle, Phys. Rev. B 92, 165427 (2015)

    ADS  Google Scholar 

  11. C. Grazianetti, E. Cinquanta, A. Molle 2D Materials 3, 012001 (2016)

    Google Scholar 

  12. L. Tau, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, D. Akinwande, Nat. Nanotechnol. 10, 227 (2015)

    ADS  Google Scholar 

  13. E. Bianco, S. Butler, S. Jiang, O.D. Restrepo, W. Windl, J.E. Goldberge, ACS Nano 7, 4414 (2013)

    Google Scholar 

  14. H. Nakano, Y. Tanaka, K. Yamamoto, H. Kadowaki, M. Nakashima, T. Matsui, S. Shirai, M. Ohashi, J. Ohshita, Adv. Optical Mater. 7, 1900696 (2019)

    Google Scholar 

  15. H. Sahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R.T. Senger, S. Ciraci, Phys. Rev. B 80, 155453 (2009)

    ADS  Google Scholar 

  16. L. Pan, H.J. Liu, Y.W. Wen, X.J. Tan, H.Y. Lv, J. Shi, X.F. Tan, Phys. Lett. A 375, 614 (2011)

    ADS  Google Scholar 

  17. X.X. Zhang, Y.B. Wang, P. Zhao, C. He, Phys. Chem. Chem. Phys. 18, 26205 (2016)

    Google Scholar 

  18. T.E. Whall, E.H.C. Parker, Thin Solid Films 367, 250 (2000)

    ADS  Google Scholar 

  19. J. Menendez, A. Pinczuk, J. Bevk, J.P. Mannaerts J. Vac. Sci. Technol. B 6, 1306 (1988)

    ADS  Google Scholar 

  20. See e.g. S.C. Jaint, W. Hayes, Semicond. Sci. Technol. 6, 547 (1991)

    ADS  Google Scholar 

  21. A. Debernardi, L. Marchetti, Phys. Rev. B 93, 245426 (2016)

    ADS  Google Scholar 

  22. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys.: Condens. Matter 21, 395502 (2009)

    Google Scholar 

  23. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  24. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396(E) (1997)

    ADS  Google Scholar 

  25. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    ADS  Google Scholar 

  26. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    ADS  Google Scholar 

  27. A.M. Rappe, K.M. Rabe, E. Kaxiras, J.D. Joannopoulos, Phys. Rev. B 41, 1227 (1990)

    ADS  Google Scholar 

  28. D. Vanderbilt, Phys. Rev. B 41, 7892(R) (1990)

    ADS  Google Scholar 

  29. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    ADS  MathSciNet  Google Scholar 

  30. B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, B. Aufray, Appl. Phys. Lett. 97, 223109 (2010)

    ADS  Google Scholar 

  31. H. Jamgotchian, Y. Colignon, N. Hamzaoui, B. Ealet, J.Y. Hoarau, B. Aufray, J.P. Bibérian, J. Phys.: Condens. Matter 24, 172001 (2012)

    ADS  Google Scholar 

  32. F. d’Acapito, S. Torrengo, E. Xenogiannopoulou, P. Tsipas, J. Marquez Velasco, D. Tsoutsou, A. Dimoulas, J. Phys.: Condens. Matter 28, 045002 (2016)

    ADS  Google Scholar 

  33. M. Balkanski, R.F. Wallis,Semiconductor Physics and Applications (Oxford University Press, Oxford, 2000)

  34. L. Vegard, Z. Phys. 5, 17 (1921)

    ADS  Google Scholar 

  35. D. Akinwande, N. Petrone, J. Hone, Nat. Commun. 5, 5678 (2014)

    ADS  Google Scholar 

  36. A. Kara, H. Enriquez, A.P. Seitsonen, L.C. Lew, Y. Voom, S. Vizzini, B. Aufray, H. Oughaddou, Surf. Sci. Rep. 67, 1 (2012)

    ADS  Google Scholar 

  37. K.L. Low, W. Huang, Y.-C. Yeo, G. Liang, IEEE Tran. pn Electron Devices 61, 1590 (2014)

    ADS  Google Scholar 

  38. R.M. Martin,Electronic structures (Cambridge University Press, Cambridge, 2004)

  39. R. Braunstein, A.B. Moore, F. Herman, Phys. Rev. 109, 695 (1958)

    ADS  Google Scholar 

  40. R.-w. Zhang, et al., Solid State Commun. 191, 49 (2014)

    ADS  Google Scholar 

  41. P. Xiao, X.-L. Fan, L.-M. Liu, Comput. Mater. Sci. 92, 244 (2014)

    Google Scholar 

  42. M.A.L. Marques, C.A. Ullrich, F. Nogueira, A. Rubio, K. Burke, E.K.U. Gross,Time-Dependent Density Functional Theory (Springer, Berlin, 2006)

  43. C. Huang, S. Wu, A.N. Sanchez, J.P. Peters, R. Beanland, J.S. Ross, P. Rivera, W. Yao, D.H. Cobden, X. Xu, Nat. Mater. 13, 1096 (2014)

    Google Scholar 

  44. S.V. Golod, V. Ya. Prinz, P. Wägli, L. Zhang, O. Kirfel, E. Deckhardt, F. Glaus, C. David, D. Grützmacher, Appl. Phys. Lett. 84, 3391 (2004)

    ADS  Google Scholar 

  45. J. Zang, M. Huang, F. Liu, Phys. Rev. Lett. 98, 146102 (2007)

    ADS  Google Scholar 

  46. P.N. Keating, Phys. Rev. 145, 637 (1966)

    ADS  Google Scholar 

  47. A. Zunger, S.-H. Wei, L.G. Ferreira, J.E. Bernard, Phys. Rev. Lett. 65, 353 (1990)

    ADS  Google Scholar 

  48. P. Boguslawski, A. Baldereschi, inProceedings of the 17th International Conference of the Physics of Semiconductors, edited by J.D. Chadi, W.A. Harrison (Springer, New York, 1990), p. 939

  49. A. Baldereschi, M. Peressi, J. Phys.: Condens. Matter 5, B37 (1993)

    Google Scholar 

  50. S. Picozzi, F. Antoniella, A. Continenza, A. MoscaConte, A. Debernardi, M. Peressi, Phys. Rev. B 70, 165205 (2004)

    ADS  Google Scholar 

  51. U. Tinivella, M. Peressi, A. Baldereschi, J. Phys.: Condens. Matter 9, 11141 (1997)

    ADS  Google Scholar 

  52. P.N. Suding, R.M. Ziff, Phys. Rev. E 60, 275 (1999)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Debernardi.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debernardi, A. Tuning structural and electronic properties of two dimensional Si and Ge based random alloys: an ab initio study. Eur. Phys. J. B 93, 117 (2020). https://doi.org/10.1140/epjb/e2020-100590-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-100590-y

Keywords

Navigation