Skip to main content
Log in

Spin-dependent conductance statistics in systems with spin-orbit coupling

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Spin-dependent partial conductances are evaluated in a tight-binding description of electron transport in the presence of spin-orbit (SO) couplings, using transfer-matrix methods. As the magnitude of SO interactions increases, the separation of spin-switching channels from non-spin-switching ones is gradually erased. Spin-polarised incident beams are produced by including a Zeeman-like term in the Hamiltonian. The exiting polarisation is shown to exhibit a maximum as a function of the intensity of SO couplings. For moderate site disorder, and both weak and strong SO interactions, no evidence is found for a decay of exiting polarisation against increasing system length. With very low site disorder and weak SO couplings a spin-filter effect takes place, as polarisation increases with increasing system length.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Hikami, A.I. Larkin, Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980)

    Article  ADS  Google Scholar 

  2. G. Bergmann, Phys. Rep. 107, 1 (1984)

    Article  ADS  Google Scholar 

  3. T. Ando, Phys. Rev. B 40, 5325 (1989)

    Article  ADS  Google Scholar 

  4. I. Žutić, J. Fabian, S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004)

    Article  ADS  Google Scholar 

  5. S.D. Bader, S.S.P. Parkin, Annu. Rev. Condens. Matter Phys. 1, 71 (2010)

    Article  ADS  Google Scholar 

  6. V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, Y. Tserkovnyak, Rev. Mod. Phys. 90, 015005 (2018)

    Article  ADS  Google Scholar 

  7. S.L.A. de Queiroz, R.B. Stinchcombe, Phys. Rev. E 95, 042121 (2017)

    Article  ADS  Google Scholar 

  8. A.M.S. Macêdo, J.T. Chalker, Phys. Rev. B 46, 14985 (1992)

    Article  ADS  Google Scholar 

  9. R. Merkt, M. Janssen, B. Huckestein, Phys. Rev. B 58, 4394 (1998)

    Article  ADS  Google Scholar 

  10. T. Kaneko, M. Koshino, T. Ando, Phys. Rev. B 78, 245303 (2008)

    Article  ADS  Google Scholar 

  11. S.N. Evangelou, T. Ziman, J. Phys. C: Solid State Phys. 20, L235 (1987)

    Article  ADS  Google Scholar 

  12. S.N. Evangelou, Phys. Rev. Lett. 75, 2550 (1995)

    Article  ADS  Google Scholar 

  13. Y. Asada, K. Slevin, T. Ohtsuki, Phys. Rev. B 70, 035115 (2004)

    Article  ADS  Google Scholar 

  14. J.-L. Pichard, G. Sarma, J. Phys. C: Solid State Phys. 14, L127 (1981)

    Article  ADS  Google Scholar 

  15. J.-L. Pichard, G. Sarma, J. Phys. C: Solid State Phys. 14, L617 (1981)

    Article  ADS  Google Scholar 

  16. A. Yamakage, K. Nomura, K.-I. Imura, Y. Kuramoto, Phys. Rev. B 87, 205141 (2013)

    Article  ADS  Google Scholar 

  17. J.B. Pendry, A. MacKinnon, P.J. Roberts, Proc. Roy. Soc. Ser. A 437, 67 (1992)

    ADS  Google Scholar 

  18. A.P. Taylor, A. MacKinnon, J. Phys.: Condens. Matter 14, 8663 (2002)

    ADS  Google Scholar 

  19. Y.V. Nazarov, Y.M. Blanter,Quantum Transport (Cambridge University Press, 2009)

  20. R. Landauer, Phil. Mag. 21, 863 (1970)

    Article  ADS  Google Scholar 

  21. M. Rühlander, P. Markos, C.M. Soukoulis, Phys. Rev. B 64, 193103 (2001)

    Article  ADS  Google Scholar 

  22. P. Markos inAnderson Localization and Its Ramifications, Lecture Notes in Physics, edited by T. Brandes and S. Kettemann (Springer, 2003), Vol. 630; https://cond-mat/0211037

  23. T. Ohtsuki, K. Slevin, B. Kramer, Physica E 22, 248 (2004)

    Article  ADS  Google Scholar 

  24. P. Markos, L. Schweitzer, J. Phys. A: Math. General 39, 3221 (2006)

    Article  ADS  Google Scholar 

  25. J.-I. Ohe, M. Yamamoto, T. Ohtsuki, Phys. Rev. B 68, 165344 (2003)

    Article  ADS  Google Scholar 

  26. J.-I. Ohe, M. Yamamoto, T. Ohtsuki, J. Nitta, Phys. Rev. B 72, 041308(R) (2005)

    Article  ADS  Google Scholar 

  27. J.-L. Pichard, inQuantum Coherence in Mesoscopic Systems, NATO ASI Series B, edited by B. Kramer (Plenum, 1991), Vol. 254

  28. C.W.J. Beenakker, Rev. Mod. Phys. 69, 731 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio L. A. de Queiroz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Queiroz, S.L.A. Spin-dependent conductance statistics in systems with spin-orbit coupling. Eur. Phys. J. B 93, 41 (2020). https://doi.org/10.1140/epjb/e2020-100589-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-100589-4

Keywords

Navigation