Skip to main content
Log in

Magneto-optical properties of Fibonacci graphene superlattices

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We have studied the transition strength and magneto-optical absorption in Fibonacci graphene superlattices under the effects of perpendicularly applied magnetic field. It is shown that the former quantity present self-similarity and anti-self-similarity behavior at magnetic field strengths connected via τ4 and τ2, respectively, τ being the golden mean. In order to be able to observe this effect, it is necessary that for a particular field the transition strength curve is displaced laterally as a rigid body so that the adjustment is achieved with that corresponding to the other field. It was found that this shifting is determined by the symmetry and scaling properties of the Fibonacci structure. For all the magnetic fields and polarizations of the incident radiation considered here, it is observed that the absorption spectra have the characteristic of self-similarity and also that they show resonant peak structures that satisfy selection rules that keep, in very good approximation, the same characteristics of graphene monolayers. We showed analytically that the similarity properties of both the transition strength and optical absorption are a direct consequence of those of the magnetic subbands.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  2. M.O. Goerbig, Rev. Mod. Phys. 83, 1193 (2011)

    Article  ADS  Google Scholar 

  3. C.H. Yang, F.M. Peeters, W. Xu, Phys. Rev. B 82, 205428 (2010)

    Article  ADS  Google Scholar 

  4. X. Yao, A. Belyanin, J. Phys.: Condens. Matter 25, 054203 (2013)

    ADS  Google Scholar 

  5. M.L. Sadowski, G. Martinez, M. Potemski, C. Berger, W.A. de Heer, Phys. Rev. Lett. 97, 266405 (2006)

    Article  ADS  Google Scholar 

  6. L.G. Booshehri, C.H. Mielke, D.G. Rickel, S.A. Crooker, Q. Zhang, L. Ren, E.H. Hároz, A. Rustagi, C.J. Stanton, Z. Jin, Z. Sun, Z. Yan, J.M. Tour, J. Kono, Phys. Rev. B 85, 205407 (2012)

    Article  ADS  Google Scholar 

  7. A.D. Guçlu, P. Potasz, P. Hawrylak, Phys. Rev. B 88, 155429 (2013)

    Article  ADS  Google Scholar 

  8. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  9. V.P. Gusynin, S.G. Sharapov, Phys. Rev. B 73, 245411 (2006)

    Article  ADS  Google Scholar 

  10. V.P. Gusynin, S.G. Sharapov, J.P. Carbotte, Phys. Rev. Lett. 98, 157402 (2007)

    Article  ADS  Google Scholar 

  11. M. Koshino, T. Ando, Phys. Rev. B 77, 115313 (2008)

    Article  ADS  Google Scholar 

  12. S.A. Mikhailov, Phys. Rev. B 79, 241309 (2009)

    Article  ADS  Google Scholar 

  13. R.S. Deacon, K.-C. Chuang, R.J. Nicholas, K.S. Novoselov, A.K. Geim, Phys. Rev. B 76, 081406 (2007)

    Article  ADS  Google Scholar 

  14. C.-Hwan Park, Y.-Woo Son, L. Yang, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 103, 046808 (2009)

    Article  ADS  Google Scholar 

  15. L. Jiang, Y. Zheng, J. Appl. Phys. 109, 053701 (2011)

    Article  ADS  Google Scholar 

  16. S. Wu, M. Killi, A. Paramekanti, Phys. Rev. B 85, 195404 (2012)

    Article  ADS  Google Scholar 

  17. C.A. Duque, M.A. Hernández-Bertrán, A.L. Morales, M. de Dios-Leyva, J. Appl. Phys. 121, 074301 (2017)

    Article  ADS  Google Scholar 

  18. M. de Dios-Leyva, M.A. Hernández-Bertrán, A.L. Morales, C.A. Duque, H.V. Phuc, Ann. Phys. 530, 1700414 (2018)

    Article  MathSciNet  Google Scholar 

  19. R. Merlin, K. Bajema, R. Clarke, F.Y. Juang, P.K. Bhattacharya, Phys. Rev. Lett. 55, 1768 (1985)

    Article  ADS  Google Scholar 

  20. J.B. Sokoloff, Phys. Rep. 126, 189 (1985)

    Article  ADS  Google Scholar 

  21. A.H. MacDonald, inInterfaces, Quantum Wells, and Superlattices, edited by C.R. Leavens, R. Taylor (Plenum, New York, 1987), p. 347

  22. Y.Y. Wang, J.C. Maan, Phys. Rev. B 40, 1955 (1989)

    Article  ADS  Google Scholar 

  23. A. Bruno-Alfonso, E. Reyes-Gómez, L.E. Oliveira, M. de Dios-Leyva, J. Appl. Phys. 78, 1379 (1995)

    Article  ADS  Google Scholar 

  24. D. Toet, M. Potemski, Y.Y. Wang, J.C. Maan, L. Tapfer, K. Ploog, Phys. Rev. Lett. 66, 2128 (1991)

    Article  ADS  Google Scholar 

  25. M. de Dios-Leyva, A. Bruno-Alfonso, E. Reyes-Gómez, L.E. Oliveira, J. Phys.: Condens. Matter 7, 9799 (1995)

    ADS  Google Scholar 

  26. E. Reyes-Gómez, C.A. Perdomo-Leiva, M. de Dios-Leyva, L.E. Oliveira, Phys. Rev. B 74, 033314 (2006)

    Article  ADS  Google Scholar 

  27. M. de Dios-Leyva, M.A. Hernández-Bertrán, A.L. Morales, C.A. Duque, Solid State Commun. 284–286, 93 (2018)

    Article  ADS  Google Scholar 

  28. M. Kolár, M.K. Ali, Phys. Rev. B 39, 426 (1989)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Duque.

Additional information

Contribution to the Topical Issue “Advances in Quasi-Periodic and Non-Commensurate Systems”, edited by Tobias Stauber and Sigmund Kohler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Dios-Leyva, M., Hernández-Bertrán, M.A., Akimov, V. et al. Magneto-optical properties of Fibonacci graphene superlattices. Eur. Phys. J. B 93, 47 (2020). https://doi.org/10.1140/epjb/e2020-100583-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-100583-x

Navigation