Skip to main content
Log in

Limited coagulation-diffusion dynamics in inflating spaces

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We consider the one-dimensional coagulation–diffusion problem on a dynamical expanding linear lattice, in which the effect of the coagulation process is balanced by the dilatation of the distance between particles. Distances x(t) follow the general law  (t) ∕ x (t) = α (1 + αt ∕ β) -1 with growth rate α and exponent β, describing both algebraic and exponential (β = ) growths. In the space continuous limit, the particle dynamics is known to be subdiffusive, with the diffusive length varying like t1∕2−β for β < 1∕2, logarithmic for β = 1∕2, and reaching a finite value for all β > 1∕2. We interpret and characterize quantitatively this phenomenon as a second order phase transition between an absorbing state and a localized state where particles are not reactive. We furthermore investigate the case when space is discrete and use a generating function method to solve the time differential equation associated with the survival probability. This model is then compared with models of growth on geometrically constrained two-dimensional domains, and with the theory of fractional diffusion in the subdiffusive case. We found in particular a duality relation between the diffusive lengths in the inflating space and the fractional theory.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. ben Avraham, S. Havlin,Diffusion and Reactions in Fractals and Disordered Systems (Cambridge University Press, 2000)

  2. M. Henkel, H. Hinrichsen, S. Lübeck, inNon-equilibrium Phase Transitions: Absorbing Phase Transitions (Springer, Heidelberg, 2008), Vol. 1

  3. G. Ódor,Universality in Non-equilibrium Lattice Systems (World Scientific, Singapore, 2008)

  4. R. Kroon, H. Fleurent, R. Sprik, Phys. Rev. E 47, 2462 (1993)

    Article  ADS  Google Scholar 

  5. R.M. Russo, E.J. Mele, C.L. Kane, I.V. Rubtsov, M.J. Therien, D.E. Luzzi, Phys. Rev. B 74, R041405 (2006)

    Article  ADS  Google Scholar 

  6. J.L. Spouge, Phys. Rev. Lett. 60, 871 (1988) [Erratum: Ibid 60, 1885 (1988)]

    Article  ADS  MathSciNet  Google Scholar 

  7. C.R. Doering, D. ben Avraham, Phys. Rev. Lett. 62, 2563 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  8. H. Hinrichsen, V. Rittenberg, H. Simon, J. Stat. Phys. 86, 1203 (1997)

    Article  ADS  Google Scholar 

  9. A. Ali, R.C. Ball, S. Grosskinsky, E. Somfai, Phys. Rev. E 87, 020102 (2013)

    Article  ADS  Google Scholar 

  10. S.B. Yuste, E. Abad, C. Escudero, Phys. Rev. E 94, 042153 (2016)

    Google Scholar 

  11. F. Le Vot, C. Escudero, E. Abad, S.B. Yuste, Phys. Rev. E 98, 032137 (2018)

    Article  ADS  Google Scholar 

  12. A. Bhakta, E. Ruckenstein, Adv. Colloid. Interfac. 70, 1 (2003)

    Article  Google Scholar 

  13. M. Mancini, Ph.D. Thesis, Université Cergy-Pontoise, 2005, https://tel.archives-ouvertes.fr/tel-00010304

  14. V. Berezinsky, A.Z. Gazizov, Astrophys. J. 643, 8 (2006)

    Article  ADS  Google Scholar 

  15. A. Ali, E. Somfai, S. Grosskinsky, Phys. Rev. E 85, 021923 (2012)

    Article  ADS  Google Scholar 

  16. C.A. Yates, J. Theor. Biol. 350, 37 (2014)

    Article  Google Scholar 

  17. M.J. Simpson, PLoS ONE 10, e0117949 (2015)

    Article  MathSciNet  Google Scholar 

  18. O. Hallatschek, P. Hersen, S. Ramanathan, D.R. Nelson, Proc. Natl. Acad. Sci. U.S.A. 104, 19926 (2007)

    Article  ADS  Google Scholar 

  19. C.D. Nadell, K. Drescher, K.R. Foster, Nat. Rev. Microbiol. 14, 589 (2016)

    Article  Google Scholar 

  20. R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000)

    Article  ADS  Google Scholar 

  21. S.B. Yuste, K. Lindenberg, Phys. Rev. Lett. 87, 118301 (2001)

    Article  ADS  Google Scholar 

  22. J.H. Jeon, A.V. Chechkin, R. Metzler, Phys. Chem. Chem. Phys. 16, 15811 (2014)

    Article  Google Scholar 

  23. D. ben Avraham, Phys. Rev. Lett. 81, 4756 (1998)

    Article  ADS  Google Scholar 

  24. A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev, in Integrals and Series, Vol. 5. Inverse Laplace Transforms (Gordon and Breach Science Publishers, New York, 1992), p. 52

  25. X. Durang, J.Y. Fortin, D.D. Biondo, M. Henkel, J. Richert, J. Stat. Mech. 2010, P04002 (2010)

    Article  Google Scholar 

  26. R.S. Pathak, H.D. Chaubey, Proc. Ind. Acad. Sci. 82, 191 (1975)

    Article  Google Scholar 

  27. J.L. Spouge, Phys. Rev. Lett. 60, 871 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  28. E. Whittaker, G. Watson,A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions, with an Account of the Principal Transcendental Functions (Cambridge University Press, 1996)

  29. A. Ali, R.C. Ball, S. Grosskinsky, E. Somfai, J. Stat. Mech. Theory Exp. 2013, P09006 (2013)

    Article  Google Scholar 

  30. B. Øksendal,Stochastic Differential Equations: An Introduction with Applications, 5th edn. (Springer-Verlag, 2000)

  31. M.G. Hahn, K. Kobayashi, S. Umarov, Proc. Am. Math. Soc. 139, 691 (2011)

    Article  Google Scholar 

  32. C.N. Angstmann, B.I. Henry, A.V. McGann, Phys. Rev. E 96, 042153 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  33. R. Hilfer, inApplications of Fractional Calculus in Physics (World Scientific Publishing Company, Singapore, 2000), p. 9, Eq. (1.20)

  34. F. Mainardi, Discret. Contin. Dyn. Syst.-Ser. B 19, 2267 (2014)

    Google Scholar 

  35. B.J. West, P. Grigolini, R. Metzler, T.F. Nonnenmacher, Phys. Rev. E 55, 99 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  36. E. Barkai, R. Metzler, J. Klafter, Phys. Rev. E 61, 132 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  37. F. Le Vot, S.B. Yuste, Phys. Rev. E 98, 42117 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  38. E.W. Montroll, H. Scher, J. Stat. Phys. 9, 101 (1973)

    Article  ADS  Google Scholar 

  39. R. Metzler, A.V. Chechkin, J. Klafter, inEncyclopedia of Complexity and Systems Science, edited by R.A. Meyers (Springer New York, New York, 2009), p. 5218

  40. V.V. Petrov,Limit Theorems of Probability Theory: Sequences of Independent Random Variables, Oxford Studies in Probability 4 (Clarendon Press; Oxford University Press, 1995)

  41. R.N. Mantegna, H.E. Stanley, Phys. Rev. Lett. 73, 2946 (1994)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Yves Fortin.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fortin, JY., Durang, X. & Choi, M. Limited coagulation-diffusion dynamics in inflating spaces. Eur. Phys. J. B 93, 175 (2020). https://doi.org/10.1140/epjb/e2020-10058-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10058-9

Keywords

Navigation