Skip to main content
Log in

Dynamical analysis, FPGA implementation and its application to chaos based random number generator of a fractal Josephson junction with unharmonic current-phase relation

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The dynamical characteristics and its applications to random number generator of a fractal Josephson junction with unharmonic current-phase relation (FJJUCPR) described by a linear resistive-capacitive-inductance shunted junction (LRCLSJ) model are investigated in this paper. The dependence of the equilibrium points of the system to the external current source or the unharmonic current-phase relation (UCPR) parameter is revealed and their stability are analysed. The inclusion of unharmonic current-phase relation in an ideal or a fractal Josephson junction leads to transform the spiking, bursting and relaxations oscillations to an excitable mode. While the inclusion of fractal characteristics in insulating layer of Josephson junction leads to an increase of the amplitude of the spiking, bursting and relaxations oscillations. The numerical simulations results also indicate that FJJUCPR exhibits self-excited chaotic attractors and two different shapes of hidden chaotic attractors. The FJJUCPR is implemented in field programmable gate arrays (FPGA) in order to validate the numerical simulations results. In addition, random number generator design is performed using chaotic signals of the FJJUCPR. The random number generator design results are successful in the NIST SP 800-22 test.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Machida, T. Koyama, Phys. Rev. B 70, 024523 (2004)

    Article  ADS  Google Scholar 

  2. Y.M. Shukrinov, F. Mahfouzi, P. Seidel, Physica C 449, 62 (2006)

    Article  ADS  Google Scholar 

  3. M. Machida, T. Koyama, A. Tanaka, M. Tachiki, Physica C 330, 85 (2000)

    Article  ADS  Google Scholar 

  4. M. Suzuki, M. Hayashi, H. Ebisawa, J. Phys. Chem. Solid 69, 3253 (2008)

    Article  ADS  Google Scholar 

  5. R.N. Chitra, V.C. Kuriakose, Chaos 18, 013125 (2008)

    Article  ADS  Google Scholar 

  6. E.N. Pozzo, D. Domínguez, Phys. Rev. Lett. 98, 057006 (2007)

    Article  ADS  Google Scholar 

  7. K. Inomata, S. Sato, K. Nakajima, A. Tanaka, H.B. Wang, M. Nagao, H. Hatano, S. Kawabata, Phys. Rev. Lett. 95, 107005 (2005)

    Article  ADS  Google Scholar 

  8. M. Machida, T. Kano, S. Yamada, M. Okumora, T. Imamura, T. Koyama, J. Phys. Chem. Solids 69, 3221 (2008)

    Article  ADS  Google Scholar 

  9. T. Koyama, M. Machida, J. Phys. Chem. Solids 69, 3232 (2008)

    Article  ADS  Google Scholar 

  10. M.P. Kennedy, R. Rovatti, G. Setti, B. Raton,Chaotic electronics in telecommunications (CRC, Boca Raton, 2000)

  11. T. Sugiura, Y. Yamanashi, N. Yoshikawa, IEEE Trans. Appl. Supercond. 21, 843 (2011)

    Article  ADS  Google Scholar 

  12. A. Uchida, P. Davis, S. Itaya, Appl. Phys. Lett. 83, 3213 (2003)

    Article  ADS  Google Scholar 

  13. R.L. Kautz, J. Appl. Phys. 52, 6241 (1981)

    Article  ADS  Google Scholar 

  14. K.K. Likharev,Dynamics of Josephson junctions and circuits (Gorden and Breach, New York, 1986)

  15. S.K. Dana, D.C. Sengupta, K.D. Edoh, IEEE Trans. Circuits Syst. I. 48, 990 (2001)

    Article  Google Scholar 

  16. C.B. Whan, C.L. Lobb, Phys. Rev. E 53, 405 (1996)

    Article  ADS  Google Scholar 

  17. A.B. Cawthorne, C.B. Whan, C.L. Lobb, Appl. Phys. 84, 1126 (1998)

    Article  Google Scholar 

  18. X.S. Yang, Q. Li, Chaos Soliton. Fract. 27, 25 (2006)

    Article  ADS  Google Scholar 

  19. E. Neumann, A. Pikovsky, Eur. Phys. J. B 34, 293 (2003)

    Article  ADS  Google Scholar 

  20. S.T. Kingni, G.F. Kuiate, R. Kengne, R. Tchitnga, P. Woafo, Complexity 2017, 4107358 (2017)

    Google Scholar 

  21. S.K. Dana, D.Ch. Sengupta, K.D. Edoh, IEEE Trans. Circuits Syst. I. 48, 990 (2001)

    Article  Google Scholar 

  22. S.K. Dana, IEEE Trans. Circ. Syst. II 53, 1031 (2006)

    Article  Google Scholar 

  23. U.E. Vincent, A. Ucar, J.A. Laoye, S.O. Kareem, Physica C 468, 374 (2008)

    Article  ADS  Google Scholar 

  24. A.N. Njah, K.S. Ojo, G.A. Adebayo, A.O. Obawole, Physica C 470, 558 (2010)

    Article  ADS  Google Scholar 

  25. M. Canturk, I.N. Askerzade, IEEE Trans. Appl. Superconduct. 21, 3541 (2011)

    Article  ADS  Google Scholar 

  26. M. Canturk, I. Askerzade, J. Supercond. Novel Magn. 26, 839 (2013)

    Article  Google Scholar 

  27. S.T. Kingni, G.F. Kuiate, V.K. Tamba, A.V. Monwanou, J.B. Chabi, J. Supercond. Nov. Magn. 32, 2295 (2019)

    Article  Google Scholar 

  28. S.P. Kruchinin, V.F. Klepikov, V.E. Kruchinin, Mater. Sci. Pol. 23, 1009 (2005)

    Google Scholar 

  29. S.P. Kruchinin, S. Novikov, V.F. Klepikov, Metrol. Meas. Syst. 15, 281 (2008)

    Google Scholar 

  30. Y.S. Barash, JETP Lett. 100, 205 (2014)

    Article  Google Scholar 

  31. Q. Wang, S. Yu, C. Li, J. Lu, X. Fang, C. Guyeux, J.M. Bahi, IEEE Trans. Circ. Syst. I 63, 401 (2016)

    Google Scholar 

  32. F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark,The NIST handbook of mathematical functions (Cambridge University Press, Cambridge, UK, 2010)

  33. B. Karakaya, A. Gülten, M. Frasca, Chaos Solitons Fractals 119, 143 (2019)

    Article  ADS  Google Scholar 

  34. S.A. Tuncer, T. Kaya, Comput. Math. Methods Med. 2018, 3579275 (2018)

    Google Scholar 

  35. T. Kaya, Analog Integr. Circ. Signal Process. 102, 415 (2020)

    Article  Google Scholar 

  36. I. Koyuncu, Design and implementation of FPGA based new chaotic oscillators and true random number generators for cryptographic applications, PhD Thesis, Department of Electrical-Electronic Engineering, Institute of Natural Sciences, Sakarya University, 2014

  37. Special Publication (NIST SP) – 800-22 Rev 1a. A statistical test suite for random and pseudorandom number generators for cryptographic applications, National Institute of Standards and Technology, 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sifeu Takougang Kingni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kingni, S.T., Rajagopal, K., Çiçek, S. et al. Dynamical analysis, FPGA implementation and its application to chaos based random number generator of a fractal Josephson junction with unharmonic current-phase relation. Eur. Phys. J. B 93, 44 (2020). https://doi.org/10.1140/epjb/e2020-100562-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-100562-9

Keywords

Navigation