Skip to main content
Log in

Control of thermal current in the Brownian heat pump

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Here heat conduction in the Brownian heat pump (BHP) driven by external periodic forces is investigated. By means of numerical simulation, we found that thermal current of the BHP can be controlled by means of the external periodic forces. As phase shift ϕ of the BHP takes smaller values, if one end of the BHP is regulated only by one periodic force, the thermal current can go from the end to the other end of the BHP. Whereas for the greater values of ϕ, the thermal current can go from the other end to the end adjusted by the periodic force. With the increment of amplitude of the periodic force, a thermal current reversal phenomenon takes places in the BHP. In the system, there also exists a critical phenomenon about ϕ, at whose critical point its thermal current is almost equal to zero no matter how the amplitude of the periodic force is changed. If the two ends of the BHP are adjusted simultaneously by their own periodic forces, its thermal current takes both positive and negative values, and oscillates periodically with the phase difference between the two periodic forces. The results will possess a crucial significance in understanding performance mechanisms of nano-machines and organisms.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.V. Smoluchowski, Phys. Z. 13, 1069 (1912)

    Google Scholar 

  2. R.P. Feynman, R.B. Leighton, M. Sands,The Feynman Lectures on Physics (Addison-Wesley, Reading, MA, 1966)

  3. T. Salger, S. Kling, T. Hecking, C. Geckeler, L. Morales-Molina, M. Weitz, Science 326, 1241 (2009)

    Article  ADS  Google Scholar 

  4. I. Goychuk, V. Kharchenko, Phys. Rev. E 85, 051131 (2012)

    Article  ADS  Google Scholar 

  5. P. Hänggi, F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009)

    Article  ADS  Google Scholar 

  6. P. Reimann, Phys. Rep. 361, 57 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  7. X.X. Sun, L.R. Nie, P. Li, Europhys. Lett. 95, 50003 (2011)

    Article  ADS  Google Scholar 

  8. H. Lodish et al.,Molecular Cell Biology (Freeman, New York, 2000)

  9. A. Parmeggiani, F. Jülicher, A. Ajdari, J. Prost, Phys. Rev. E 60, 2127 (1999)

    Article  ADS  Google Scholar 

  10. H.X. Zhou, Y.D. Chen, Phys. Rev. Lett. 77, 194 (1996)

    Article  ADS  Google Scholar 

  11. Z.C. Tu, X. Hu, Phys. Rev. B 72, 033404 (2005)

    Article  ADS  Google Scholar 

  12. E.R. Kay, D.A. Leigh, F. Zerbetto, Angew. Chem. Int. Ed. 46, 72 (2007)

    Article  Google Scholar 

  13. M. Schreier, P. Reimann, P. Hänggi, E. Pollak, Europhys. Lett. 44, 416 (1998)

    Article  ADS  Google Scholar 

  14. Z.R. Zhou, L. Bai, C.Z. Shu, L.R. Nie, Eur. Phys. J. B 85, 287 (2012)

    Article  ADS  Google Scholar 

  15. B.Q. Ai, Y.F. He, W.R. Zhong, Phys. Rev. E 82, 061102 (2010)

    Article  ADS  Google Scholar 

  16. D. Guo, C. Li, D.C. Mei, Physica A 525, 1192 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  17. S. Savel’ev, F. Marchesoni, F. Nori, Phys. Rev. E 71, 011107 (2005)

    Article  ADS  Google Scholar 

  18. M. Feito, F.J. Cao, Phys. Rev. E 76, 061113 (2007)

    Article  ADS  Google Scholar 

  19. M. Borromeo, S. Giusepponi, F. Marchesoni, Phys. Rev. E 74, 031121 (2006)

    Article  ADS  Google Scholar 

  20. S. Savel’ev, F. Marchesoni, P. Hänggi, F. Nori, Phys. Rev. E 70, 066109 (2004)

    Article  ADS  Google Scholar 

  21. D. Barik, P.K. Ghosh, D.S. Ray, J. Stat. Mech. 2006, P03010 (2006)

    Google Scholar 

  22. L.L. Yu, L. Bai, L.R. Nie, X.H. Wang, Eur. Phys. J. B 86, 351 (2013)

    Article  ADS  Google Scholar 

  23. R.Y. Chen, W.L. Pan, J.Q. Zhang, L.R. Nie, Chaos 26, 093113 (2016)

    Article  Google Scholar 

  24. L. Cao, D.J. Wu, Phys. Lett. A 291, 371 (2001)

    Article  ADS  Google Scholar 

  25. W. Guo, D.C. Mei, Physica A 416, 90 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  26. R.Y. Chen, L.R. Nie, C.Y. Chen, Chaos 28, 053115 (2018)

    Article  ADS  Google Scholar 

  27. R.Y. Chen, L.R. Nie, C.Y. Chen, C.J. Wang, J. Stat. Mech. 2017, 013201 (2017)

    Article  Google Scholar 

  28. D. Speer, R. Eichhorn, P. Reimann, Europhys. Lett. 79, 10005 (2007)

    Article  ADS  Google Scholar 

  29. D. Speer, R. Eichhorn, P. Reimann, Phys. Rev. Lett. 102, 124101 (2009)

    Article  ADS  Google Scholar 

  30. R.Y. Chen, C.J. Wang, Z.F. He, Chaos Solitons Fractals 126, 116 (2019)

    Article  ADS  Google Scholar 

  31. R.Y. Chen, X.N. Lv, Physica A 514, 336 (2019)

    Article  ADS  Google Scholar 

  32. J.C. Li, C. Li, D.C. Mei, Phys. Lett. A 378, 1997 (2014)

    Article  ADS  Google Scholar 

  33. L.J. Yang, F. Lv, D.C. Mei, Physica A 432, 331 (2015)

    Article  ADS  Google Scholar 

  34. L.L. Yu, R.Y. Chen, L.R. Nie, Eur. Phys. J. B 88, 1 (2015)

    Article  ADS  Google Scholar 

  35. C. Van den Broeck, R. Kawai, Phys. Rev. Lett. 96, 210601 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  36. M. Van den Broek, C. Van den Broeck, Phys. Rev. Lett. 100, 130601 (2008)

    Article  ADS  Google Scholar 

  37. A. Gomez-Marin, J.M. Sancho, Phys. Rev. E 71, 021101 (2005)

    Article  ADS  Google Scholar 

  38. L.R. Nie, L.L. Yu, Z.G. Zhang, C.Z. Shu, Phys. Rev. E 87, 062142 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linru Nie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Shi, Z. & Nie, L. Control of thermal current in the Brownian heat pump. Eur. Phys. J. B 93, 56 (2020). https://doi.org/10.1140/epjb/e2020-100551-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-100551-0

Keywords

Navigation