Skip to main content
Log in

Re-entrance and localization phenomena in disordered Fibonacci chains

Disorder induced crossover from critical states to Anderson localized states

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We consider quasiperiodic tight-binding models and the effects of disorder on wavefunctions in one dimension. While in an infinite system all states are localized by disorder, however weak, in finite chains the situation is more interesting. It was shown recently for the Fibonacci nearest neighbor hopping model that certain states can be delocalized for weak disorder: Their inverse participation ratios (IPRs) decreases with disorder strength at weak disorder, goes through a minimum, and thereafter increases for stronger values of disorder. Finite size scaling analysis shows the existence of different classes of wavefunctions and non-monotonic (re-entrant) behavior. The scaling variable depends on a new critical exponent ν whose value is determined by the parameters of the quasiperiodic Hamiltonian. We show that this re-entrant dependence of the IPRs exists for the general class of Fibonacci models and provide the explanation for the different behaviors observed in terms of the type of spatial characteristics of the wavefunctions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ostlund, R. Pandit, D. Rand, H.J. Schellnhuber, E.D. Siggia, Phys. Rev. Lett. 50, 1873 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  2. M. Kohmoto, L.P. Kadanoff, C. Tang, Phys. Rev. Lett. 50, 1870 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  3. M. Kohmoto, W. Sutherland, C. Tang, Phys. Rev. B 35, 1020 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  4. H. Hiramoto, M. Kohmoto, Phys. Rev. B. 40, 8225 (1989)

    Article  ADS  Google Scholar 

  5. P.A. Kalugin, A.Yu. Kitaev, L.S. Levitov, Zh. Eksp. Teor. Fiz. 91, 692 (1986)

    ADS  Google Scholar 

  6. J.A. Ashraff, R.B. Stinchcombe, Phys. Rev. B 37, 5723 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  7. S.N. Evangelou, J. Phys. C 20, L295 (1987)

    Article  ADS  Google Scholar 

  8. E. Macia, F. Dominguez-Adame, Phys. Rev. Lett. 79, 5301 (1997)

    Article  ADS  Google Scholar 

  9. Q. Niu, F. Nori, Phys. Rev. Lett. 57, 2057 (1986)

    Article  ADS  Google Scholar 

  10. Q. Niu, F. Nori, Phys. Rev. B 42, 10329 (1990)

    Article  ADS  Google Scholar 

  11. S. Thiem, M. Schreiber, Eur. Phys. J. B 83, 415 (2011)

    Article  ADS  Google Scholar 

  12. N. Mace, A. Jagannathan, F. Piéchon, Phys. Rev. B 93, 205153 (2016)

    Article  ADS  Google Scholar 

  13. F. Delyon, D. Petritis, Commun. Math. Phys. 103, 441 (1986)

    Article  ADS  Google Scholar 

  14. A. Jagannathan, P. Jeena, M. Tarzia, Phys. Rev. B 99, 054203 (2019)

    Article  ADS  Google Scholar 

  15. F. Piéchon, M. Benakli, A. Jagannathan, Phys. Rev. Lett. 74, 5248 (1995)

    Article  ADS  Google Scholar 

  16. V.K. Varma, S. Pilati, V.E. Kravtsov, Phys. Rev. B 99, 214204 (2016)

    Article  ADS  Google Scholar 

  17. J. Bellissard, inFrom Number Theory to Physics (Springer Proc. Phys., Berlin, 1990), Vol. 47, p. 140

  18. H.Q. Yuan, U. Grimm, P. Repetowicz, M. Schreiber, Phys. Rev. B 62, 15569 (2000)

    Article  ADS  Google Scholar 

  19. R. Del Rio, S. Jitomirskaya, Y. Last, B. Simon, J. Anal. Math. 69, 153 (1996)

    Article  MathSciNet  Google Scholar 

  20. D. Braun, E. Hofstetter, A. MacKinnon, G. Montambaux, Phys. Rev. B 55, 7557 (1997)

    Article  ADS  Google Scholar 

  21. K.M. Slevin, T. Ohtsuki, Phys. Rev. Lett. 82, 382 (1999)

    Article  ADS  Google Scholar 

  22. K.M. Slevin, T. Ohtsuki, New J. Phys. 16, 015012 (2014)

    Article  ADS  Google Scholar 

  23. A. Rodriguez, L.J. Vasquez, K. Slevin, R.A. Römer, Phys. Rev. B 84, 134209 (2011)

    Article  ADS  Google Scholar 

  24. J.C.C. Cestari, A. Foerster, M.A. Gusmao, M. Continentino, Phys. Rev. A 84, 055601 (2011)

    Article  ADS  Google Scholar 

  25. H.-F. Gao, R.-B. Tao, Commun. Theor. Phys. 46, 929 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  26. J.C. Lopez, G. Naumis, J.L. Aragon, Phys. Rev. B 48, 12459 (1993)

    Article  ADS  Google Scholar 

  27. G.G. Naumis, J.L. Aragon, Phys. Lett. A 244, 133 (1998)

    Article  ADS  Google Scholar 

  28. M.T. Velhinho, I.R. Pimentel, Phys. Rev. B 61, 1043 (2000)

    Article  ADS  Google Scholar 

  29. D. Huang, D. Huang, Phys. Rev. B 70, 205124 (2004)

    Article  ADS  Google Scholar 

  30. G.G. Naumis, Phys. Rev. B 59, 11315 (1999)

    Article  ADS  Google Scholar 

  31. D. Mayou, C. Berger, F. Cyrot-Lackmann, T. Klein, P. Lanco, Phys. Rev. Lett. 70, 3915 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuradha Jagannathan.

Additional information

Contribution to the Topical Issue “Advances in Quasi-Periodic and Non-Commensurate Systems”, edited by Tobias Stauber and Sigmund Kohler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagannathan, A., Tarzia, M. Re-entrance and localization phenomena in disordered Fibonacci chains. Eur. Phys. J. B 93, 46 (2020). https://doi.org/10.1140/epjb/e2020-100504-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-100504-7

Navigation