Skip to main content
Log in

A continuum model with traffic interruption probability and electronic throttle opening angle effect under connected vehicle environment

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The electronic throttle system is the key component of the intelligent control system of connected and automated vehicles (CAVs). Although CAVs are expected to be commercialized in the near future, in practice the disturbances and interruptions are not uncommon along the road. In this paper, we propose a new continuum model considering the traffic interruption probability and the electronic throttle opening angle effect. Based on the linear stability analysis, the stability condition of the proposed model is obtained. The KdV-Burgers equation of the new continuum model is further obtained in the nonlinear analysis. The density solution obtained by solving the above equation can be used to describe the evolution characteristics of traffic flow near the neutral stability curve. Results show that the traffic interruption probability and the electronic throttle opening angle effect has a considerable impact on the stability of traffic flow.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Wu, R. Liu, W. Jin, Transp. Res. B 93, 95 (2016)

    Google Scholar 

  2. W. Wu, R. Liu, W. Jin, Trans. Res. B 104, 175 (2017)

    Google Scholar 

  3. W. Wu, R. Liu, W. Jin, C. Ma, Tran. Res. B 121, 275 (2019)

    Google Scholar 

  4. W. Wu, R. Liu, W. Jin, C. Ma, Tran. Res. E 130, 61 (2019)

    Google Scholar 

  5. A. Gupta, V. Katiyar, Transportmetrica 3, 73 (2007)

    Google Scholar 

  6. A. Gupta, V. Katiyar, J. Phys. A 38, 4069 (2005)

    ADS  MathSciNet  Google Scholar 

  7. A. Gupta, S. Sharma, Chin. Phys. B 1, 299 (2012)

    Google Scholar 

  8. A. Gupta, S. Sharma, Chin. Phys. B 11, 156 (2010)

    Google Scholar 

  9. A. Gupta, Int. J. Mod. Phys. C 24, 50018 (2013)

    ADS  Google Scholar 

  10. A. Gupta, I. Dhiman, Nonlinear Dyn. 79, 663 (2015)

    Google Scholar 

  11. A.K. Gupta, S. Sharma, P. Redhu, Commun. Theor. Phys. 62, 393 (2014)

    Google Scholar 

  12. P. Redhu, A.K. Gupta, Physica A 421, 249 (2015)

    ADS  Google Scholar 

  13. C. Zhai, W. Wu, Mod. Phys. Lett. B 32, 1 (2018)

    Google Scholar 

  14. C. Zhai, W. Wu, Clust. Comput. 22, 7447 (2019)

    Google Scholar 

  15. C. Zhai, W. Wu, Int. J. Mod. Phys. C 2020, 2050031 (2020)

    Google Scholar 

  16. C. Zhai, W. Wu, Mod. Phys. Lett. B 33, 2050071 (2020)

    Google Scholar 

  17. S. Sharma, Physica A 421, 401 (2015)

    ADS  Google Scholar 

  18. S. Sharma, Nonlinear Dyn. 81, 991 (2015)

    Google Scholar 

  19. A.K. Gupta, P. Redhu, Physica A 392, 5622 (2013)

    ADS  Google Scholar 

  20. L. Zheng, S. Ma, S. Zhong, Physica A 390, 1072 (2011)

    ADS  Google Scholar 

  21. J.P. Meng, S.Q. Dai, L.Y. Dong et al., Physica A 380, 470 (2007)

    ADS  Google Scholar 

  22. H.X. Ge, X.P. Meng, H.B. Zhu et al., Physica A 408, 28 (2014)

    ADS  MathSciNet  Google Scholar 

  23. D. Yang, P. Jin, Y. Pu et al., Physica A 395, 371 (2014)

    ADS  MathSciNet  Google Scholar 

  24. L. Zheng, S. Zhong, P.J. Jin et al., Physica A 391, 5948 (2012)

    ADS  Google Scholar 

  25. M. Bando, K. Hasebe, A. Nakayama et al., Phys. Rev. E 51, 1035 (1995)

    ADS  Google Scholar 

  26. B.G. Cao, Physica A 427, 218 (2015)

    ADS  MathSciNet  Google Scholar 

  27. D.W. Liu, Z.K. Shi, W.H. Ai, Commun. Nonlinear Sci. Numer. Simul. 47, 139 (2017)

    ADS  MathSciNet  Google Scholar 

  28. S. Yu, Z. Shi, Physica A 428, 206 (2015)

    ADS  Google Scholar 

  29. F. Lv, H.B. Zhu, H.X. Ge, Nonlinear Dyn. 77, 1245 (2014)

    Google Scholar 

  30. C. Zhai, W. Wu, Mod. Phys. Lett. B 32, 1850382 (2018)

    ADS  Google Scholar 

  31. L.J. Zheng, C. Tian, D.H. Sun et al., Nonlinear Dyn. 70, 1205 (2012)

    Google Scholar 

  32. H.X. Ge, F. Lv, P.J. Zheng et al., Nonlinear Dyn. 76, 1497 (2014)

    Google Scholar 

  33. C. Zhai, W. Wu, Int. J. Mod. Phys. C 30, 1959973 (2019)

    Google Scholar 

  34. Y. Jin, M. Xu, Physica A 459, 107 (2016)

    ADS  MathSciNet  Google Scholar 

  35. S. Li, L. Yang, Z. Gao et al., Isa Trans. 53, 1739 (2014)

    Google Scholar 

  36. G. Peng, Q. Li, Mod. Phys. Lett. B 30, 1650243 (2016)

    ADS  Google Scholar 

  37. Y. Zhang, P. Ni, M. Li et al., J. Adv. Trans. 2017, 1 (2017)

    Google Scholar 

  38. C. Zhai, W. Wu, Nonlinear Dyn. 2018, 1 (2018)

    Google Scholar 

  39. D.H. Sun, X.Y. Liao, G.H. Peng, Physica A 390, 631 (2011)

    ADS  Google Scholar 

  40. G.H. Peng, Chin. Phys. B 19, 434 (2010)

    Google Scholar 

  41. D.H. Sun, X.Y. Liao, G.H. Peng, Physica A 390, 631 (2011)

    ADS  Google Scholar 

  42. G.H. Peng, D.H. Sun, Phys. Lett. A 374, 1694 (2010)

    ADS  Google Scholar 

  43. G.H. Peng, X.H. Cai, C.Q. Liu et al., Phys. Lett. A 375, 3973 (2011)

    ADS  Google Scholar 

  44. G.H. Peng, R.J. Cheng, Physica A 392, 3563 (2013)

    ADS  MathSciNet  Google Scholar 

  45. F. Liu, R. Cheng, H. Ge et al., Nonlinear Dyn. 85, 1469 (2016)

    Google Scholar 

  46. F. Liu, R. Cheng, P. Zheng et al., Nonlinear Dyn. 83, 1 (2016)

    Google Scholar 

  47. C. Zhai, W. Wu, Phys. Lett. A 382, 3381 (2018)

    ADS  MathSciNet  Google Scholar 

  48. L. Yi, R.J. Cheng, L. Li et al., Physica A 463, 376 (2016)

    ADS  MathSciNet  Google Scholar 

  49. T. Tang, W. Shi, H. Shang et al., Nonlinear Dyn. 76, 2017 (2014)

    Google Scholar 

  50. S. Yu, Q. Liu, X. Li, Commun. Nonlinear Sci. Numer. Simul. 18, 1229 (2013)

    ADS  MathSciNet  Google Scholar 

  51. J. Zhao, P. Li, Physica A 473, 178 (2017)

    ADS  MathSciNet  Google Scholar 

  52. Y.J. Liu, H.L. Zhang, L. He, Chin. Phys. Lett. 29, 104502 (2012)

    ADS  Google Scholar 

  53. J. Monteil, R. Billot, J. Sau et al., IEEE Trans. Intell. Trans. Syst. 15, 2001 (2014)

    Google Scholar 

  54. H. Liu, D. Sun, M. Zhao, Nonlinear Dyn. 84, 881 (2016)

    Google Scholar 

  55. Y.L. Jiao, H.X. Ge, R.J. Chen, Physica A 535, 122362 (2019)

    MathSciNet  Google Scholar 

  56. Y. Li, H. Yang, B. Yang et al., Nonlinear Dyn. 93, 1923 (2018)

    Google Scholar 

  57. D. Helbing, B. Tilch, Phys. Rev. E 58, 133 (1998)

    ADS  Google Scholar 

  58. R. Jiang, Q. Wu, Z. Zhu, Phys. Rev. E 64, 017101 (2001)

    ADS  Google Scholar 

  59. T.Q. Tang, H.J. Huang, S.J. Huang et al., Chin. Phys. B 387, 975 (2009)

    ADS  Google Scholar 

  60. R. Cheng, H. Ge, J. Wang, Phys. Lett. A 381, 2792 (2017)

    ADS  MathSciNet  Google Scholar 

  61. R. Cheng, J. Wang, H. Ge et al., Mod. Phys. B 32, 1850037 (2018)

    ADS  Google Scholar 

  62. N. Davoodi, A.R. Soheili, S.M. Hashemi, Nonlinear Dyn. 83, 1621 (2016)

    Google Scholar 

  63. H. Liu, P. Zheng, K. Zhu et al., Physica A 438, 26 (2015)

    ADS  MathSciNet  Google Scholar 

  64. R. Jiang, Q.S. Wu, Z.J. Zhu, Trans. Res. B 36, 405 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weitiao Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, C., Wu, W. A continuum model with traffic interruption probability and electronic throttle opening angle effect under connected vehicle environment. Eur. Phys. J. B 93, 52 (2020). https://doi.org/10.1140/epjb/e2020-100492-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-100492-6

Keywords

Navigation