Skip to main content
Log in

The impact of the predictive effect on traffic dynamics in a lattice model with passing

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper, we study the impact of the predictive effect with passing for a unidirectional single-lane highway. The model is further analyzed theoretically by the means of stability analysis. The influence of the predictive effect is examined on traffic stream stability through linear stability analysis when passing is permitted. It is shown that the accurate expected behavior of the vehicles ahead can enhance the stability of traffic flow for any rate of passing. Using nonlinear stability analysis, we obtained the critical value of passing constant for which kink soliton solution of mKdV equation exist. When the passing constant is smaller than critical value, the jamming transition occurs between uniform flow and kink flow while for higher value of passing constant, the jamming transitions occur from uniform flow to kink density wave flow through a chaotic phase. Numerical simulation verifies the theoretical predictions which confirms that the traffic congestion can be suppressed efficiently by considering the predictive effect in a single-lane traffic system when passing is allowed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.X. Ge, S.Q. Dai, L.Y. Dong, Y. Xue, Phys. Rev. E 70, 066134 (2004)

    ADS  Google Scholar 

  2. R. Jiang, Q.S. Wu, Z.J. Zhu, Phys. Rev. E 64, 017101 (2001)

    ADS  Google Scholar 

  3. M. Bando, K. Hasebe, A. Nakayama, A. Shibata, Y. Sugiyama, Phys. Rev. E 51, 1035 (1995)

    ADS  Google Scholar 

  4. T.Q. Tang, J.G. Li, H.J. Huang, X.B. Yang, Measurement 48, 63 (2014)

    Google Scholar 

  5. T.Q. Tang, Q. Yu, K. Liu, Physica A 466, 1 (2017)

    ADS  Google Scholar 

  6. T.Q. Tang, T. Wang, L. Chen, H.J. Huang, Physica A 490, 451 (2018)

    ADS  Google Scholar 

  7. P. Liao, T.Q. Tang, T. Wang, J. Zhang, Physica A 525, 108 (2019)

    ADS  Google Scholar 

  8. K. Nagel, M. Schreckenberg, J. Phys. I 2, 2221 (1992)

    Google Scholar 

  9. J.F. Tian, B. Jia, X.G. Li, R. Jiang, X.M. Zhao, Z.Y. Gao, Physica A 388, 4827 (2009)

    ADS  Google Scholar 

  10. A.K. Gupta, V.K. Katiyar, J. Phys. A 38, 4069 (2005)

    ADS  MathSciNet  Google Scholar 

  11. R. Jiang, Q.S. Wu, Z.J. Zhu, Trans. Res. B 36, 405 (2002)

    Google Scholar 

  12. T. Nagatani, Physica A 261, 599 (1998)

    ADS  MathSciNet  Google Scholar 

  13. E.D. Angelis, Math. Comput. Model. 29, 83 (1999)

    Google Scholar 

  14. A.K. Gupta, V.K. Katiyar, Physica A 368, 551 (2006)

    ADS  Google Scholar 

  15. T.Q. Tang, H.J. Huang, H.Y. Shang, Physica A 468, 322 (2017)

    ADS  Google Scholar 

  16. H.X. Ge, R.J. Cheng, Physica A 387, 6952 (2008)

    ADS  Google Scholar 

  17. T.F. Tian, Z.Z. Yuan, B. Jia, M.H. Li, G.J. Jiang, Physica A 391, 4476 (2012)

    ADS  Google Scholar 

  18. C. Tian, D.H. Sun, M. Zhang, Commun. Nonlinear Sci. Numer. Simul. 16, 4524 (2011)

    ADS  Google Scholar 

  19. G.H. Peng, H. Kuang, L. Qing, Physica A 509, 651 (2018)

    ADS  Google Scholar 

  20. G.H. Peng, S.H. Yang, H.Z. Zhao, Physica A 509, 855 (2018)

    ADS  Google Scholar 

  21. P. Redhu, V. Siwach, Physica A 492, 1473 (2018)

    ADS  MathSciNet  Google Scholar 

  22. G.H. Peng, S.H. Yang, H.Z. Zhao, Commun. Theor. Phys. 70, 803 (2018)

    Google Scholar 

  23. T. Nagatani, Physica A 265, 297 (1999)

    ADS  Google Scholar 

  24. T. Wang, Z.Y. Gao, X.M. Zhao, J.F. Tian, W.Y. Zhang, Chin. Phys. B 21, 070507 (2012)

    ADS  Google Scholar 

  25. G.H. Peng, Commun. Nonlinear Sci. Numer. Simul. 18, 559 (2013)

    ADS  MathSciNet  Google Scholar 

  26. A.K. Gupta, P. Redhu, Commun. Nonlinear Sci. Numer. Simul. 19, 1600 (2014)

    ADS  MathSciNet  Google Scholar 

  27. S. Sharma, Physica A 421, 401 (2015)

    ADS  Google Scholar 

  28. G.H. Peng, S.H. Yang, D.X. Xia, X.Q. Li, Nonlinear Dyn. 94, 2969 (2018)

    Google Scholar 

  29. G.H. Peng, H. Kuang, H.Z. Zhao, L. Qing, Physica A 515, 93 (2019)

    ADS  MathSciNet  Google Scholar 

  30. G.H. Peng, H.Z. Zhao, X.Q. Li, Physica A 515, 31 (2019)

    ADS  MathSciNet  Google Scholar 

  31. G.H. Peng, X.H. Cai, C.Q. Liu, M.X. Tuo, Phys. Lett. A 376, 447 (2012)

    ADS  Google Scholar 

  32. G.H. Peng, Commun. Nonlinear Sci. Numer. Simul. 18, 2801 (2013)

    ADS  MathSciNet  Google Scholar 

  33. G.H. Peng, Nonlinear Dyn. 73, 1035 (2013)

    Google Scholar 

  34. A.K. Gupta, P. Redhu, Physica A 392, 5622 (2013)

    ADS  Google Scholar 

  35. S. Sharma, Nonlinear Dyn. 81, 991 (2015)

    Google Scholar 

  36. G.H. Peng, H. Kuang, L. Qing, Physica A 507, 374 (2018)

    ADS  Google Scholar 

  37. T. Nagatani, Phys. Rev. E 59, 4857 (1999)

    ADS  Google Scholar 

  38. A.K. Gupta, P. Redhu, Phys. Lett. A 377, 2027 (2013)

    ADS  MathSciNet  Google Scholar 

  39. P. Redhu, A.K. Gupta, Nonlinear Dyn. 78, 957 (2014)

    Google Scholar 

  40. T. Nagatani, Phys. Rev. E 60, 1535 (1999)

    ADS  Google Scholar 

  41. A.K. Gupta, P. Redhu, Nonlinear Dyn. 76, 1001 (2014)

    Google Scholar 

  42. P. Redhu, A.K. Gupta, Physica A 421, 249 (2015)

    ADS  Google Scholar 

  43. S. Sharma, Nonlinear Dyn. 86, 2093 (2016)

    Google Scholar 

  44. A.K. Gupta, S. Sharma, P. Redhu, Nonlinear Dyn. 80, 1091 (2015)

    Google Scholar 

  45. R. Kaur, S. Sharma, Physica A 510, 446 (2018)

    ADS  MathSciNet  Google Scholar 

  46. T. Wang, R.J. Cheng, H.X. Ge, Physica A 533, 121915 (2019)

    MathSciNet  Google Scholar 

  47. T. Wang, R. Zang, K. Xu, J. Zhang, Physica A 526, 120711 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sapna Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, D., Sharma, S. The impact of the predictive effect on traffic dynamics in a lattice model with passing. Eur. Phys. J. B 93, 35 (2020). https://doi.org/10.1140/epjb/e2020-100469-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-100469-5

Keywords

Navigation