Skip to main content
Log in

Green-Kubo algorithm in the calculation of anomalous heat conduction for models with and without sound mode

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Green-Kubo algorithm is an effective method for the calculation of transport coefficients in terms of integral of the current correlation function. In this paper, we investigate two important issues of this algorithm in the calculation of anomalous heat conduction. Firstly, since the correlation function should be calculated in the thermodynamic limit which is never possible in practise, the necessary size of system should be determined. Secondly and more importantly, in the anomalous heat conduction cases, in order to work out a length-N-dependent heat conductivity κ(N), we need to set a cutoff time τN as a upper limit of the integral. τN is commonly set to be proportional to N. However it has been observed very recently that in a model without sound mode τN is not that simple but grows as Nν with ν = 1.5 instead. We apply the algorithm to two typical one-dimensional models with and without sound modes, and find that the necessary size is extremely small for the model without sound mode, but relatively large for the model with strong sound modes. By studying the heat diffusion process via the local energy correlation, the value of τN can also be quantitatively determined.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. van Beijeren, Phys. Rev. Lett. 108, 180601 (2012)

    Article  ADS  Google Scholar 

  2. C.B. Mendl, H. Spohn, Phys. Rev. Lett. 111, 230601 (2013)

    Article  ADS  Google Scholar 

  3. H. Spohn, J. Stat. Phys. 154, 1191 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  4. S. Lepri, R. Livi, A. Politi, Phys. Rep. 377, 1 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  5. A. Dhar, Adv. Phys. 57, 457 (2008)

    Article  ADS  Google Scholar 

  6. O. Narayan, S. Ramaswamy, Phys. Rev. Lett. 89, 200601 (2002)

    Article  ADS  Google Scholar 

  7. T. Mai, O. Narayan, Phys. Rev. E 73, 061202 (2006)

    Article  ADS  Google Scholar 

  8. L. Delfini, S. Lepri, R. Livi, A. Politi, Phys. Rev. E 73, 060201(R) (2006)

    Article  ADS  Google Scholar 

  9. L. Delfini, S. Lepri, R. Livi, A. Politi, J. Stat. Mech. 2007, P02007 (2007)

    Article  Google Scholar 

  10. G.R. Lee-Dadswell, B.G. Nickel, C.G. Gray, Phys. Rev. E 72, 031202 (2005)

    Article  ADS  Google Scholar 

  11. V. Popkov, A. Schadschneider, J. Schmidt, G.M. Schütz, Proc. Natl. Acad. Sci. USA 112, 12645 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  12. D. Xiong, Phys. Rev. E 97, 022116 (2018)

    Article  ADS  Google Scholar 

  13. G. Basile, C. Bernardin, S. Olla, Phys. Rev. Lett. 96, 204303 (2006)

    Article  ADS  Google Scholar 

  14. G. Basile, C. Bernardin, S. Olla, Commun. Math. Phys. 287, 67 (2009)

    Article  ADS  Google Scholar 

  15. R. Kubo, M. Toda, N. Hashitsume, inStatistical Physics II, Springer Series in Solid State Sciences (Springer, Berlin, 1991), Vol. 31

  16. L. Wang, L. Xu, H. Zhao, Phys. Rev. E 91, 012110 (2015)

    Article  ADS  Google Scholar 

  17. S. Tamaki, M. Sasada, K. Saito, Phys. Rev. Lett. 119, 110602 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  18. K. Saito, M. Sasada, Commun. Math. Phys. 361, 951 (2018)

    Article  ADS  Google Scholar 

  19. J.P. Hansen, I.R. McDonald, eds.,Theory of Simple Liquids, 4th edn. (Academic Press, Oxford, 2013)

  20. B.R. Johnson, J.O. Hirschfelder, K.H. Yang, Rev. Mod. Phys. 55, 109 (1983)

    Article  ADS  Google Scholar 

  21. S. Chen, Y. Zhang, J. Wang, H. Zhao, Phys. Rev. E 87, 032153 (2013)

    Article  ADS  Google Scholar 

  22. L. Wang, Z. Wu, L. Xu, Phys. Rev. E 91, 062130 (2015)

    Article  ADS  Google Scholar 

  23. L. Xu, L. Wang, Phys. Rev. E 96, 052139 (2017)

    Article  ADS  Google Scholar 

  24. L. Wang, T. Wang, Europhys. Lett. 93, 54002 (2011)

    Article  ADS  Google Scholar 

  25. S. Chen, Y. Zhang, J. Wang, H. Zhao, Phys. Rev. E 89, 022111 (2014)

    Article  ADS  Google Scholar 

  26. H. Zhao, Phys. Rev. Lett. 96, 140602 (2006)

    Article  ADS  Google Scholar 

  27. S. Liu, P. Hänggi, N. Li, J. Ren, B. Li, Phys. Rev. Lett. 112, 040601 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, D., Wang, L. Green-Kubo algorithm in the calculation of anomalous heat conduction for models with and without sound mode. Eur. Phys. J. B 93, 39 (2020). https://doi.org/10.1140/epjb/e2020-100452-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-100452-2

Keywords

Navigation