Skip to main content
Log in

Finding modular structure in multiplex networks by sequential intra-layer edge elimination

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Identifying modular properties of multiplex networks presents additional subtleties to the already corresponding difficult problem in single layer networks. One most evident issue is the presence of conflicting module partitions, when two or more layers have very clear community structure that differ from one another. Based on the well known Newman-Girvan method, a framework (MultiNG) to reach this goal is developed and tested. Taking into account that the community structure of any multiplex layer can be evaluated in advance, and that multiplex nodes have an intrinsic identity, MultiNG is targeted at finding one sole global structure, meaning that to any node a single module is assigned in all layers. As a consequence, inter-layer connections are preserved throughout the process, and only intra-layer edges are eligible to be eliminated. The reliability of the procedure is tested by investigating different cases, as synthetic multiplex networks and multiplex networks obtained from real data. Results are compared with those obtained by other methods.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Boccaletti, G. Bianconi, R. Criado, C.I. del Genio, J. Gómez-Gardeñes, M. Romance, I. Sendiña-Nadal, Z. Wang, M. Zanin, Phys. Rep. 544, 1 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  2. M. Kivelä, A. Arenas, M. Barthelemy, J.P. Gleeson, Y. Moreno, M.A. Porter, J. Complex Netw. 2, 203 (2014)

    Article  Google Scholar 

  3. F. Battiston, V. Nicosia, V. Latora, Phys. Rev. E 89, 032804 (2014)

    Article  ADS  Google Scholar 

  4. A. Solé-Ribalta, M. De Domenico, S. Gómez, A. Arenas, Physica D 323–324, 73 (2016)

    Article  ADS  Google Scholar 

  5. M. De Domenico, C. Granell, M.A. Porter, A. Arenas, Nat. Phys. 12, 901 (2016)

    Article  Google Scholar 

  6. A.B. Serrano, J. Gómez-Gardeñes, R.F.S. Andrade, Phys. Rev. E 95, 052312 (2017)

    Article  ADS  Google Scholar 

  7. P.J. Mucha, T. Richardson, K. Macon, M.A. Porter, J.-P. Onnela, Science 328, 876 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  8. G. Didier, C. Brun, A. Baudot, S. Gomez, PeerJ 3, e1525 (2015)

    Article  Google Scholar 

  9. L. Bennett, A. Kittas, G. Muirhead, L.G. Papageorgiou, Sophia Tsoka, Sci. Rep. 5, 10345 (2015)

    ADS  Google Scholar 

  10. Z. Kuncheva, G. Montana, Community detection in multiplex networks using locally adaptive random walks, CoRR, https://arXiv:1507.01890 (2015)

  11. M. De Domenico, A. Lancichinetti, A. Arenas, M. Rosvall, Phys. Rev. X 5, 011027 (2015)

    Google Scholar 

  12. M. Hmimida, R. Kanawati, Netw. Heterog. Media 10, 71 (2015)

    Article  MathSciNet  Google Scholar 

  13. M. Girvan, M.E.J. Newman, Proc. Natl. Acad. Sci. USA 99, 7821 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  14. M.E.J. Newman, M. Girvan, Phys. Rev. E 69, 026113 (2004)

    Article  ADS  Google Scholar 

  15. V.D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, J. Stat. Mech. Theor. Exp. 2008, P10008 (2008)

    Article  Google Scholar 

  16. R.F.S. Andrade, J.G.V. Miranda, T.P. Lobão, Phys. Rev. E 73, 046101 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  17. R.F.S. Andrade, J.G.V. Miranda, S.T.R. Pinho, T.P. Lobão, Eur. Phys. J. B 61, 247 (2008)

    Article  ADS  Google Scholar 

  18. M. De Domenico, A. Solé-Ribalta, E. Cozzo, M. Kivelä, Y. Moreno, M.A. Porter, S. Gómez, A. Arenas, Phys. Rev. X 3, 041022 (2013)

    Google Scholar 

  19. S. Battiston, G. Caldarelli, A. Garas,Multiplex and Multilevel Networks (OUP, Oxford, 2018)

  20. L.G.S. Jeub, M. Bazzi, I.S. Jutla, P.J. Mucha, A generalized Louvain method for community detection implemented in MATLAB, http://netwiki.amath.unc.edu/GenLouvain, https://github.com/GenLouvain/GenLouvain (2011-2019)

  21. M. De Domenico, V. Nicosia, A. Arenas, V. Latora, Nat. Commun. 6, 6864 (2015)

    Article  ADS  Google Scholar 

  22. R.F.S. Andrade, J.G.V. Miranda, S.T.R. Pinho, T.P. Lobão, Phys. Lett. A 372, 5265 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  23. A. Góes-Neto, M.V.C. Diniz, L.B.L. Santos, S.T.R. Pinho, J.G.V. Miranda, T.P. Lobao, E.P. Borges, C.N. El-Hani, R.F.S. Andrade, Biosystems 101, 59 (2010)

    Article  Google Scholar 

  24. R.F.S. Andrade, I.C. Rocha-Neto, L.B.L. Santos, C.N. de Santana, M.V.C. Diniz, T.P. Lobão, A. Goés-Neto, S.T.R. Pinho, C.N. El-Hani, PLOS Comput. Biol. 7, e1001131 (2011)

    Article  ADS  Google Scholar 

  25. D.S. Carvalho, R.F.S. Andrade, S.T.R. Pinho, A. Góes-Neto, T.C.P. Lobão, G.C. Bomfim, C.N. El-Hani, PLOS ONE 10, e0134988 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto F. S. Andrade.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borges, D.G.F., Andrade, R.F.S. Finding modular structure in multiplex networks by sequential intra-layer edge elimination. Eur. Phys. J. B 93, 92 (2020). https://doi.org/10.1140/epjb/e2020-100075-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-100075-1

Keywords

Navigation