Skip to main content
Log in

Graph theoretical approaches for the characterization of damage in hierarchical materials

The European Physical Journal B Aims and scope Submit manuscript

Cite this article


We discuss the relevance of methods of graph theory for the study of damage in simple model materials described by the random fuse model. While such methods are not commonly used when dealing with regular random lattices, which mimic disordered but statistically homogeneous materials, they become relevant in materials with microstructures that exhibit complex multi-scale patterns. We specifically address the case of hierarchical materials, whose failure, due to an uncommon fracture mode, is not well described in terms of either damage percolation or crack nucleation-and-growth. We show that in these systems, incipient failure is accompanied by an increase in eigenvector localization and a drop in topological dimension. We propose these two novel indicators as possible candidates to monitor a system in the approach to failure. As such, they provide alternatives to monitoring changes in the precursory avalanche activity, which is often invoked as a candidate for failure prediction in materials which exhibit critical-like behavior at failure, but may not work in the context of hierarchical materials which exhibit scale-free avalanche statistics even very far from the critical load. For such anomalous systems, our novel indicators prove more effective in the analysis of digital image correlation data from experiments, as well as from large-scale numerical simulations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions


  1. A. Gautieri, S. Vesentini, A. Redaelli, M.J. Buehler, Nano Lett. 11, 766 (2011)

    Article  ADS  Google Scholar 

  2. J.Y. Rho, L. Kuhn-Spearing, P. Zioupos, Med. Eng. Phys. 20, 102 (1998)

    Article  Google Scholar 

  3. H. Gupta, J. Seto, W. Wagermaier, P. Zaslansky, P. Boesecke, P. Fratzl, Proc. Nat. Acad. Sci. USA 103, 17746 (2006)

    ADS  Google Scholar 

  4. P. Fratzl, R. Weinkamer, Prog. Mater. Sci. 52, 1334 (2007)

    Article  Google Scholar 

  5. J. Sun, B. Bhushan, RSC Adv. 2, 7632 (2012)

    Google Scholar 

  6. D. Jiao, Z. Liu, Z. Zhang, Z. Zhang, Sci. Rep. 5, 12418 (2015)

    Article  ADS  Google Scholar 

  7. P. Moretti, B. Dietemann, N. Esfandiary, M. Zaiser, Sci. Rep. 8, 12090 (2018)

    Article  ADS  Google Scholar 

  8. L. Ponson, D. Bonamy, E. Bouchaud, Phys. Rev. Lett. 96, 035506 (2006)

    Article  ADS  Google Scholar 

  9. D. Bonamy, L. Ponson, S. Prades, E. Bouchaud, C. Guillot, Phys. Rev. Lett. 97, 135504 (2006)

    Article  ADS  Google Scholar 

  10. L. Ponson, H. Auradou, M. Pessel, V. Lazarus, J.P. Hulin, Phys. Rev. E 76, 036108 (2007)

    Article  ADS  Google Scholar 

  11. L.I. Salminen, M.J. Alava, K.J. Niskanen, Eur. Phys. J. B 32, 374 (2003)

    Article  ADS  Google Scholar 

  12. S. Zapperi, P.K.V.V. Nukala, S. Simunović, Phys. Rev. E 71, 026106 (2005)

    Article  ADS  Google Scholar 

  13. M.J. Alava, P.K.V.V. Nukala, S. Zapperi, Adv. Phys. 55, 476 (2006)

    Article  Google Scholar 

  14. M. Kaiser, M. Görner, C.C. Hilgetag, New J. Phys. 9, 110 (2007)

    Article  ADS  Google Scholar 

  15. P. Moretti, M.A. Muñoz, Nat. Commun. 4, 2521 (2013)

    Article  ADS  Google Scholar 

  16. S. Boettcher, J.L. Cook, R.M. Ziff, Phys. Rev. E 80, 041115 (2009)

    Article  ADS  Google Scholar 

  17. E.J. Friedman, A.S. Landsberg, Chaos 23, 013135 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  18. A.V. Goltsev, S.N. Dorogovtsev, J.G. Oliveira, J.F.F. Mendes, Phys. Rev. Lett. 109, 128702 (2012)

    Article  ADS  Google Scholar 

  19. R. Pastor-Satorras, C. Castellano, Sci. Rep. 6, 18847 (2016)

    Article  ADS  Google Scholar 

  20. G. Ódor, R. Dickman, G. Ódor, Sci. Rep. 5, 14451 (2015)

    Article  ADS  Google Scholar 

  21. A. Safari, P. Moretti, M.A. Muñoz, New J. Phys. 19, 113011 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  22. E. Agliari, A. Barra, A. Galluzzi, F. Guerra, D. Tantari, F. Tavani, Phys. Rev. Lett. 114, 028103 (2015)

    Article  ADS  Google Scholar 

  23. S. Sandfeld, M. Zaiser, J. Stat. Mech. 2014, P03014 (2014)

    Article  Google Scholar 

  24. G. Costagliola, F. Bosia, N.M. Pugno, Phys. Rev. E 94, 063003 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Paolo Moretti.

Additional information

Contribution to the Topical Issue “Complex Systems Science meets Matter and Materials”, edited by Stefano Zapperi.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moretti, P., Renner, J., Safari, A. et al. Graph theoretical approaches for the characterization of damage in hierarchical materials. Eur. Phys. J. B 92, 97 (2019).

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: