Skip to main content
Log in

Structural, stability and thermoelectric properties for the monoclinic phase of NaSbS2 and NaSbSe2: A theoretical investigation

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

This study is the first attempt towards establishing computational insight into the structural, electronic, mechanical, dynamical and thermoelectric properties of the monoclinic phases of NaSbS2 and NaSbSe2. The mechanical properties are predicted using the Hill approximation. Dynamical stability was investigated by computing the phonon frequency to check for the absence of imaginary modes. Lattice thermal conductivity was calculated by using a single-mode relaxation-time approximation in the linearized phonon Boltzmann equation from first-principles an-harmonic lattice dynamics calculations. We found that the lattice thermal conductivity of NaSbS2 and NaSbSe2 are anisotropic, with values ranging between 0.753 and 1.173 Wm−1 K−1 at room temperature (300 K). The calculated values of the lattice thermal conductivity are small, especially along the x-axis. The charge transport properties are predicted using Boltzmann transport equations. The highest values attained for the figure of merit are high as 4.22 and 2.88 when the electron concentration is 1018 cm−3 at 600 K for NaSbS2 and NaSbSe2, respectively. This highlights the potential of using NaSbS2 and NaSbSe2 in designing thermoelectric materials since low lattice thermal conductivity and high figure of merit are a requisite for maximizing the efficiency of thermoelectric materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.J. Goldsmid, R.W. Douglas, Br. J. Appl. Phys. 5, 386 (1954)

    ADS  Google Scholar 

  2. T.M. Tritt, H. Böttner, L. Chen, MRS Bull. 33, 366 (2008)

    Google Scholar 

  3. M.D. Nielsen et al., Energy Environ. Sci. 6, 570 (2013)

    Google Scholar 

  4. V.A. Bazakutsa et al., Russ. Phys. J. 18, 472 (1975)

    Google Scholar 

  5. V.A. Bazakutsa, M.P. Vasil’Eva, J. Eng. Phys. 34, 137 (1978)

    Google Scholar 

  6. L. Yu et al., Adv. Energy Mater. 3, 43 (2013)

    ADS  Google Scholar 

  7. K. Hoang, S.D. Mahanti, J. Sci.: Adv. Mater. Devices 1, 51 (2016)

    Google Scholar 

  8. S. Chen et al., Phys. Rev. B 79, 165211 (2009)

    ADS  Google Scholar 

  9. J. Olivier-Fourcade, E. Philippot, M. Maurin, Z. Anorg. Allg. Chem. 446, 159 (1978)

    Google Scholar 

  10. A.S. Kanischeva, V.G. Kuznetsov, V.N. Batog, J. Struct. Chem. 20, 122 (1979)

    Google Scholar 

  11. B. Eisenmann, R. Zagler, Z. Naturforsch. B. 44, 249 (1989)

    Google Scholar 

  12. S.U. Rahayu et al., APL Mater. 4, 116103 (2016)

    ADS  Google Scholar 

  13. J. Sun, D.J. Singh, Phys. Rev. Appl. 7, 024015 (2017)

    ADS  Google Scholar 

  14. B.A. Aragaw et al., RSC Adv. 7, 45470 (2017)

    Google Scholar 

  15. M.K. Jana, K. Biswas, ACS Energy Lett. 3, 1315 (2018)

    Google Scholar 

  16. S.N. Guin et al., Energy Environ. Sci. 6, 2603 (2013)

    Google Scholar 

  17. F. Gascoin, M. Maignan, Chem. Mater. 23, 2510 (2011)

    Google Scholar 

  18. S. Roychowdhury et al., Angew. Chem. Int. Ed. 57, 4043 (2018)

    Google Scholar 

  19. L.D. Zhao et al., Nature 508, 373 (2014)

    ADS  Google Scholar 

  20. C. Chiritescu et al., Science 315, 351 (2007)

    ADS  Google Scholar 

  21. A. Putatunda et al., J. Phys.: Condens. Matter 30, 225501 (2018)

    ADS  Google Scholar 

  22. K. Schwarz, P. Blaha, G.K.H. Madsen, Comput. Phys. Commun. 147, 71 (2002)

    ADS  Google Scholar 

  23. A. Jain et al., APL Mater. 1, 011002 (2013)

    ADS  Google Scholar 

  24. H. Kohn, Teach. Coll. Rec. 65, 706 (1964)

    Google Scholar 

  25. C. Fiolhais, F. Nogueira, A.M. Marques, inA primer in density functional theory (Springer Science & Business Media, Berlin, 2003), vol. 620

  26. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)

    Google Scholar 

  27. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    ADS  Google Scholar 

  28. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  29. S. Grimme, J. Comput. Chem. 27, 1787 (2006)

    Google Scholar 

  30. S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 32, 1456 (2011)

    Google Scholar 

  31. P.E. Blöchl, O. Jepsen, O.K. Andersen, Phys. Rev. B 49, 16223 (1994)

    ADS  Google Scholar 

  32. F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)

    ADS  Google Scholar 

  33. D.J. Singh, Phys. Rev. B 82, 205102 (2010)

    ADS  Google Scholar 

  34. A. Togo, I. Tanaka, Scr. Mater. 108, 1 (2015)

    Google Scholar 

  35. A. Togo, L. Chaput, I. Tanaka, Phys. Rev. B 91, 094306 (2015)

    ADS  Google Scholar 

  36. M.K. Georg, C. Jesús, M.J. Verstraete, Comput. Phys. Commun. 231, 140 (2018)

    Google Scholar 

  37. X. Jinyang, L. Mengqiu, T. Ling, W. Dong, S. Zhigang, Nanoscale 4, 4348 (2012)

    Google Scholar 

  38. J. Bardeen, W. Shockley, Phys. Rev. 80, 72 (1950)

    ADS  Google Scholar 

  39. W. Setyawan, S. Curtarolo, Comput. Mater. Sci. 49, 299 (2010)

    Google Scholar 

  40. F. Birch, Phys. Rev. 71, 809 (1947)

    ADS  Google Scholar 

  41. Z. Xia et al., Chin. Chem. Lett. 28, 881 (2017)

    Google Scholar 

  42. R. Hill, J. Mech. Phys. Solids 11, 357 (1963)

    ADS  Google Scholar 

  43. F. Mouhat, F.-X. Coudert, Phys. Rev. B 90, 224104 (2014)

    ADS  Google Scholar 

  44. F. Drymiotis et al., Phys. Rev. Lett. 93, 025502 (2004)

    ADS  Google Scholar 

  45. L. Anderson, J. Phys. Chem. Solids 24, 909 (1963)

    ADS  Google Scholar 

  46. A. Kushwaha et al., Indian J. Pure Appl. Phys. 53, 585 (2015)

    Google Scholar 

  47. S.J. Kang et al., J. Alloys Compd. 583, 295 (2014)

    Google Scholar 

  48. I.N. Frantsevich,Elastic constants and elastic moduli of metals and insulators, Reference book (Naukova dumka, 1982)

  49. J.K.D. Verma, B.D. Nag, J. Phys. Soc. Jpn. 20, 635 (1965)

    ADS  Google Scholar 

  50. S.I. Ranganathan, M. Ostoja-Starzewski, Phys. Rev. Lett. 101, 055504 (2008)

    ADS  Google Scholar 

  51. D.H. Chung, W.R. Buessem, J. Appl. Phys. 38, 2010 (1967)

    ADS  Google Scholar 

  52. C. Zener,Elasticity and Anelasticity of Metals (University of Chicago, Chicago, 1948)

  53. I.R. Shivakumar, O.S. Martin, Phys. Rev. Lett. 101, 055504 (2008)

    Google Scholar 

  54. L. Liu et al., Crystals 7, 111 (2017)

    Google Scholar 

  55. K. Efthimios,Atomic and electronic structure of solids (Cambridge University Press, England, 2003)

  56. C. Kittel, inIntroduction to solid state physics (Wiley, New York 1996), Vol. 8

  57. M. Mahmoud, D. Joubert, Mater. Today 5, 10424 (2018)

    Google Scholar 

  58. S. Mukhopadhyay, L. Lindsay, D.J. Singh, Sci. Rep. 6, 37076 (2016)

    ADS  Google Scholar 

  59. P.F. Qiu et al., J. Appl. Phys. 109, 063713 (2011)

    ADS  Google Scholar 

  60. M. Mahmoud et al., Eur. Phys. J. B 92, 1 (2019)

    MathSciNet  Google Scholar 

  61. G.P. Srivastava,The Physics of Phonons (CRC Press, New York, 1990)

  62. G.J. Snyder, Nat. Mater. 7, 105 (2008)

    ADS  Google Scholar 

  63. T. Chunmei et al., RSC Adv. 9, 14422 (2019)

    Google Scholar 

  64. Z. Shuai, L. Wang, C. Song,Theory of Charge Transport in Carbon Electronic Materials (Springer, 2012)

    Google Scholar 

  65. J. Yu, T. Li, Q. Sun, J. Appl. Phys. 125, 205111 (2019)

    ADS  Google Scholar 

  66. Y.F. Li, Y.C. Ding, B. Xiao, Y.H. Cheng, Phys. Lett. A 380, 3748 (2016)

    ADS  Google Scholar 

  67. M. Jonson, G.D. Mahan, Phys. Rev. B 21, 4223 (1980)

    ADS  MathSciNet  Google Scholar 

  68. H. Heinrich et al., J. Phys.: Condens. Matter 11, 1697 (1999)

    ADS  Google Scholar 

  69. H.J. Golds,The thermal properties of solids (Dover Publications, 1965)

  70. J. Mao et al., Science 365, 495 (2019)

    ADS  Google Scholar 

  71. L. Hu et al., Adv. Energy Mater. 5, 1500411 (2015)

    Google Scholar 

  72. L.D. Zhao et al., Energy Environ. Sci. 6, 3346 (2013)

    Google Scholar 

  73. X. Shi et al., J. Am. Chem. Soc. 133, 7837 (2011)

    Google Scholar 

  74. B.C. Sales, D. Mandrus, R.K. Williams, Science 272, 5266 (1996)

    Google Scholar 

  75. D.M. Rowe,CRC handbook of thermoelectrics (CRC press, 1995)

  76. D.D.L. Wijngaards et al., Sens. Actuator A 85, 316 (2000)

    Google Scholar 

  77. H. Alam, S. Ramakrishna, Nano Energy 2, 190 (2013)

    Google Scholar 

  78. X. Hou et al., J. Alloys Compd. 482, 544 (2009)

    Google Scholar 

  79. G.J. Snyder, T.S. Ursell, Phys. Rev. Lett. 91, 148301 (2003)

    ADS  Google Scholar 

  80. V. Fiorentini, R. Farris, E. Argiolas, M.B. Maccioni, Phys. Rev. Mater. 3, 022401 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud M. A. Mahmoud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, M.M.A., Joubert, D.P. & Molepo, M.P. Structural, stability and thermoelectric properties for the monoclinic phase of NaSbS2 and NaSbSe2: A theoretical investigation. Eur. Phys. J. B 92, 214 (2019). https://doi.org/10.1140/epjb/e2019-90712-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-90712-y

Keywords

Navigation