Skip to main content
Log in

Ultralight Zintl solids assembled by Al6Na2 clusters

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The Al6Na2 cluster with 20 valence electrons is a magic structure. The Na+ cations are ionically bonded to the Al62− anions and the octahedral Al6 core itself is very stable. Here, we predicted two stable crystals built by Al6Na2 based on DFT calculations. The two structures have Pn-3m and Fd-3m space groups. Their binding energies are −18.34 and −18.28 eV per Al6Na2 unit, and the interaction energies between the building units are 1.68–1.62 eV. The calculated elastic constants and phonon spectra demonstrate that both the allotropes are mechanically and dynamically stable. The band structures show that these two crystals are semiconductors; the band gaps calculated on PAW-PBE are 0.89 and 1.40 eV. These two allotropes are the first predicted Zintl phase solids formed by simple metals, and it shows semiconductors can be synthesized from all metal atoms by using cluster as building blocks. The densities of the Pn-3m and Fd-3m allotropes are 0.92 and 0.45 cm−3. The latter structure forms a porous solid with a pore diameter of 10.35 Å, and its density is less than half of the water. This ultralight porous solid may have many potential applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.J. Khanna, P. Jena, Phys. Rev. Lett. 69, 1664 (1992)

    Article  ADS  Google Scholar 

  2. S.A. Claridge, A.W. Castlemanr, Jr. S.N. Khanna, C.B. Murray, A. Sen, P.S. Weiss, ACS Nano 3, 244 (2009)

    Article  Google Scholar 

  3. P. Jena, J. Phys. Chem. Lett. 4, 1432 (2013)

    Article  Google Scholar 

  4. A. Pinkard, A.M. Champsaur, X. Roy, Acc. Chem. Res. 51, 919 (2018)

    Article  Google Scholar 

  5. P. Jena, Q. Sun, Chem. Rev. 118, 5755 (2018)

    Article  Google Scholar 

  6. W.D. Knight, K. Clemenger, W.A. Deheer, W.A. Saunders, M.Y. Chou, M.L. Cohen, Phys. Rev. Lett. 52, 2141 (1984)

    Article  ADS  Google Scholar 

  7. W.A. Deheer, Rev. Mod. Phys. 65, 611 (1993)

    Article  ADS  Google Scholar 

  8. X. Li, H. Wu, X.B. Wang, L.S. Wang, Phys. Rev. Lett. 81, 1909 (1998)

    Article  ADS  Google Scholar 

  9. X.G. Gong, Phys. Rev. B 56, 1091 (1997)

    Article  ADS  Google Scholar 

  10. C. Ashman, S.N. Khanna, F. Liu, P. Jena, T. Kaplan, M. Mostoller, Phys. Rev. B 55, 15868 (1997)

    Article  ADS  Google Scholar 

  11. A.C. Reber, S.N. Khanna, A.W. Castleman, Jr., J. Am. Chem. Soc. 129, 10189 (2007)

    Article  Google Scholar 

  12. H. Matsuzawa, K. Sato, T. Hirata, K. Ui, N. Koura, J. Chem. Theory Comput. 3, 1818 (2007)

    Article  Google Scholar 

  13. S. Sen, P. Seal, S. Chakrabarti, Phys. Rev. B 76, 1154141 (2007)

    Google Scholar 

  14. H. Wang, X. Zhang, Y.J. Ko, A. Grubisis, X. Li, G. Gantefor, H. Schnockel, B.W. Eichhorn, M.S. Lee, P. Jena, A.K. Kandalam, B. Kiran, K.H. Bowen, J. Chem. Phys. 140, 054301 (2014)

    Article  ADS  Google Scholar 

  15. C.J. Grover, A.C. Reber, S.N. Khanna, J. Chem. Phys. 146, 224301 (2017)

    Article  ADS  Google Scholar 

  16. P. Jing, H. Yang, N. Du, Y. Zhang, H. Chen, Comput. Theor. Chem. 1117, 1 (2017)

    Article  Google Scholar 

  17. J.D. Corbett, Chem. Rev. 85, 383 (1985)

    Article  Google Scholar 

  18. S.M. Kauzlarich, Chemistry, Structure, and Bonding of Zintl Phases and Ions (VCH, New York, 1996)

  19. A. Nakajima, K. Hoshino, T. Naganuma, Y. Sone, K. Kaya, J. Chem. Phys. 95, 7061 (1991)

    Article  ADS  Google Scholar 

  20. M.T. Huynh, N. Alexandrova, J. Phys. Chem. Lett. 2, 2046 (2011)

    Article  Google Scholar 

  21. G. Kresse, J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  22. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  23. M.J. Frisch, G.W. Trucks, H.B. Schlegel et al., GAUSSIAN 09 (Revision D.01) (Gaussian, Inc, Wallingford, CT, 2013)

  24. A. Savin, R. Nesper, S. Wengert, T.F. Fassler, Angew. Chem. Int. Ed. Engl. 36, 1808 (1997)

    Article  Google Scholar 

  25. S. Edward, D.K. Steven, S. Roger, H. Graeme, J. Comput. Chem. 28, 899 (2007)

    Article  Google Scholar 

  26. C. Belin, Acta Crystallogr. B 36, 1339 (1980)

    Article  Google Scholar 

  27. C. Belin, R.G. Ling, J. Solid State Chem. 48, 40 (1983)

    Article  ADS  Google Scholar 

  28. R.W. Henning, E.L. Escamilla, J.T. Zhao, J.D. Corbett, Inorg. Chem. 36, 1282 (1997)

    Article  Google Scholar 

  29. F. Mouhat, F.X. Couder, Phys. Rev. B 90, 224104 (2014)

    Article  ADS  Google Scholar 

  30. R. Hill, Proc. Phys. Soc. A 65, 349 (1952)

    Article  ADS  Google Scholar 

  31. S.F. Pugh, Philos. Mag. 45, 823 (1954)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongshan Chen.

Additional information

Supplementary material in the form of one pdf file available from the Journal web page at https://doi.org/10.1140/epjb/e2019-90708-7

Electronic supplementary material

Supplementary data

PDF file

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Tang, J., Luo, D. et al. Ultralight Zintl solids assembled by Al6Na2 clusters. Eur. Phys. J. B 92, 108 (2019). https://doi.org/10.1140/epjb/e2019-90708-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-90708-7

Keywords

Navigation