Advertisement

Ultralight Zintl solids assembled by Al6Na2 clusters

  • Junmiao Zhao
  • Jianling Tang
  • Dan Luo
  • Hongshan ChenEmail author
Regular Article
  • 99 Downloads

Abstract

The Al6Na2 cluster with 20 valence electrons is a magic structure. The Na+ cations are ionically bonded to the Al62− anions and the octahedral Al6 core itself is very stable. Here, we predicted two stable crystals built by Al6Na2 based on DFT calculations. The two structures have Pn-3m and Fd-3m space groups. Their binding energies are −18.34 and −18.28 eV per Al6Na2 unit, and the interaction energies between the building units are 1.68–1.62 eV. The calculated elastic constants and phonon spectra demonstrate that both the allotropes are mechanically and dynamically stable. The band structures show that these two crystals are semiconductors; the band gaps calculated on PAW-PBE are 0.89 and 1.40 eV. These two allotropes are the first predicted Zintl phase solids formed by simple metals, and it shows semiconductors can be synthesized from all metal atoms by using cluster as building blocks. The densities of the Pn-3m and Fd-3m allotropes are 0.92 and 0.45 cm−3. The latter structure forms a porous solid with a pore diameter of 10.35 Å, and its density is less than half of the water. This ultralight porous solid may have many potential applications.

Graphical abstract

Keywords

Solid State and Materials 

Supplementary material

References

  1. 1.
    C.J. Khanna, P. Jena, Phys. Rev. Lett. 69, 1664 (1992) ADSCrossRefGoogle Scholar
  2. 2.
    S.A. Claridge, A.W. Castlemanr, Jr. S.N. Khanna, C.B. Murray, A. Sen, P.S. Weiss, ACS Nano 3, 244 (2009) CrossRefGoogle Scholar
  3. 3.
    P. Jena, J. Phys. Chem. Lett. 4, 1432 (2013) CrossRefGoogle Scholar
  4. 4.
    A. Pinkard, A.M. Champsaur, X. Roy, Acc. Chem. Res. 51, 919 (2018) CrossRefGoogle Scholar
  5. 5.
    P. Jena, Q. Sun, Chem. Rev. 118, 5755 (2018) CrossRefGoogle Scholar
  6. 6.
    W.D. Knight, K. Clemenger, W.A. Deheer, W.A. Saunders, M.Y. Chou, M.L. Cohen, Phys. Rev. Lett. 52, 2141 (1984) ADSCrossRefGoogle Scholar
  7. 7.
    W.A. Deheer, Rev. Mod. Phys. 65, 611 (1993) ADSCrossRefGoogle Scholar
  8. 8.
    X. Li, H. Wu, X.B. Wang, L.S. Wang, Phys. Rev. Lett. 81, 1909 (1998) ADSCrossRefGoogle Scholar
  9. 9.
    X.G. Gong, Phys. Rev. B 56, 1091 (1997) ADSCrossRefGoogle Scholar
  10. 10.
    C. Ashman, S.N. Khanna, F. Liu, P. Jena, T. Kaplan, M. Mostoller, Phys. Rev. B 55, 15868 (1997) ADSCrossRefGoogle Scholar
  11. 11.
    A.C. Reber, S.N. Khanna, A.W. Castleman, Jr., J. Am. Chem. Soc. 129, 10189 (2007) CrossRefGoogle Scholar
  12. 12.
    H. Matsuzawa, K. Sato, T. Hirata, K. Ui, N. Koura, J. Chem. Theory Comput. 3, 1818 (2007) CrossRefGoogle Scholar
  13. 13.
    S. Sen, P. Seal, S. Chakrabarti, Phys. Rev. B 76, 1154141 (2007) Google Scholar
  14. 14.
    H. Wang, X. Zhang, Y.J. Ko, A. Grubisis, X. Li, G. Gantefor, H. Schnockel, B.W. Eichhorn, M.S. Lee, P. Jena, A.K. Kandalam, B. Kiran, K.H. Bowen, J. Chem. Phys. 140, 054301 (2014) ADSCrossRefGoogle Scholar
  15. 15.
    C.J. Grover, A.C. Reber, S.N. Khanna, J. Chem. Phys. 146, 224301 (2017) ADSCrossRefGoogle Scholar
  16. 16.
    P. Jing, H. Yang, N. Du, Y. Zhang, H. Chen, Comput. Theor. Chem. 1117, 1 (2017) CrossRefGoogle Scholar
  17. 17.
    J.D. Corbett, Chem. Rev. 85, 383 (1985) CrossRefGoogle Scholar
  18. 18.
    S.M. Kauzlarich, Chemistry, Structure, and Bonding of Zintl Phases and Ions (VCH, New York, 1996) Google Scholar
  19. 19.
    A. Nakajima, K. Hoshino, T. Naganuma, Y. Sone, K. Kaya, J. Chem. Phys. 95, 7061 (1991) ADSCrossRefGoogle Scholar
  20. 20.
    M.T. Huynh, N. Alexandrova, J. Phys. Chem. Lett. 2, 2046 (2011) CrossRefGoogle Scholar
  21. 21.
    G. Kresse, J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996) CrossRefGoogle Scholar
  22. 22.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  23. 23.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel et al., GAUSSIAN 09 (Revision D.01) (Gaussian, Inc, Wallingford, CT, 2013) Google Scholar
  24. 24.
    A. Savin, R. Nesper, S. Wengert, T.F. Fassler, Angew. Chem. Int. Ed. Engl. 36, 1808 (1997) CrossRefGoogle Scholar
  25. 25.
    S. Edward, D.K. Steven, S. Roger, H. Graeme, J. Comput. Chem. 28, 899 (2007) CrossRefGoogle Scholar
  26. 26.
    C. Belin, Acta Crystallogr. B 36, 1339 (1980) CrossRefGoogle Scholar
  27. 27.
    C. Belin, R.G. Ling, J. Solid State Chem. 48, 40 (1983) ADSCrossRefGoogle Scholar
  28. 28.
    R.W. Henning, E.L. Escamilla, J.T. Zhao, J.D. Corbett, Inorg. Chem. 36, 1282 (1997) CrossRefGoogle Scholar
  29. 29.
    F. Mouhat, F.X. Couder, Phys. Rev. B 90, 224104 (2014) ADSCrossRefGoogle Scholar
  30. 30.
    R. Hill, Proc. Phys. Soc. A 65, 349 (1952) ADSCrossRefGoogle Scholar
  31. 31.
    S.F. Pugh, Philos. Mag. 45, 823 (1954) CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Junmiao Zhao
    • 1
  • Jianling Tang
    • 1
  • Dan Luo
    • 1
  • Hongshan Chen
    • 1
    Email author
  1. 1.College of Physics and Electronic Engineering, Northwest Normal UniversityLanzhouP.R. China

Personalised recommendations