Skip to main content
Log in

A model for a driven Frenkel–Kontorova chain

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study a Frenkel–Kontorova (FK) model of a finite chain with free-end boundary conditions. The model has two competing potentials. Newton trajectories are an ideal tool to understand the circumstances under a driving of an FK chain by external forces. To reach the insights we calculate some stationary structures for a chain with 23 particles. We search the lowest energy saddle points for a complete minimum energy path of the chain for a movement over the full period of the on-site potential, a sliding. If an additional tilting is set, then one is interested in barrier breakdown points (BBPs) on the potential energy surface for a critical tilting force named the static frictional force. In symmetric cases, such BBPs are often valley-ridge inflection points of the potential energy surface. We explain the theory and demonstrate it with an example. We propose a model for a DC drive, as well as an AC drive, of the chain using special directional vectors of the external force.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.M. Braun, Y.S. Kivshar, Phys. Rep. 306, 1 (1998)

    Article  ADS  Google Scholar 

  2. J. Tekić, P. Mali, The ac Driven Frenkel-Kontorova Model (University of Novi Sad, Novi Sad, 2015)

  3. O. Braun, T. Dauxois, M. Paliy, M. Peyrard, B. Hu, Physica D 123, 357 (1998)

    Article  ADS  Google Scholar 

  4. S. Brazovskii, T. Nattermann, Adv. Phys. 53, 177 (2004)

    Article  ADS  Google Scholar 

  5. M. Johansson, G. Kopidakis, S. Lepri, S. Aubry, Europhys. Lett. 86, 10009 (2009)

    Article  ADS  Google Scholar 

  6. R. Khomeriki, Eur. Phys. J. B 72, 257 (2009)

    Article  ADS  Google Scholar 

  7. S. Watanabe, H.S.J. van der Zant, S.H. Strogatz, T.P. Orlando, Physica D 97, 429 (1996)

    Article  ADS  Google Scholar 

  8. O. Braun, A. Naumovets, Surf. Sci. Rep. 60, 79 (2006)

    Article  ADS  Google Scholar 

  9. S. Flach, A.V. Gorbach, Phys. Rep. 467, 1 (2008)

    Article  ADS  Google Scholar 

  10. N. Manini, O.M. Braun, E. Tosatti, R. Guerra, A. Vanossi, J. Phys. 28, 134006 (2016)

    Google Scholar 

  11. A. Vanossi, N. Manini, M. Urbakh, S. Zapperi, Rev. Mod. Phys. 85, 529 (2013)

    Article  ADS  Google Scholar 

  12. N.I. Gershenzon, G. Bambakidis, E. Hauser, A. Ghosh, K.C. Creager, Geophys. Res. Lett. 38, L01309 (2011)

    Article  ADS  Google Scholar 

  13. T. Zanca, F. Pellegrini, G.E. Santoro, E. Tosatti, PNAS 115, 3547 (2018)

    Article  ADS  Google Scholar 

  14. W. Quapp, J.M. Bofill, Mol. Phys. (2019), https://doi.org/10.1080/00268976.2019.1576930

  15. W. Quapp, J. Theor. Comput. Chem. 2, 385 (2003)

    Article  Google Scholar 

  16. S.R. Sharma, B. Bergersen, B. Joos, Phys. Rev. B 29, 6335 (1984)

    Article  ADS  Google Scholar 

  17. Y. Braiman, J. Baumgarten, J. Jortner, J. Klafter, Phys. Rev. Lett. 65, 2398 (1990)

    Article  ADS  Google Scholar 

  18. S.L. Shumway, J.P. Sethna, Phys. Rev. Lett. 67, 995 (1991)

    Article  ADS  Google Scholar 

  19. C. Baesens, R.S. MacKay, Nonlinearity 11, 949 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  20. T. Strunz, F.J. Elmer, Phys. Rev. E 58, 1601 (1998)

    Article  ADS  Google Scholar 

  21. N. Theodorakopoulos, M. Peyrard, R.S. MacKay, Phys. Rev. Lett. 93, 258101 (2004)

    Article  ADS  Google Scholar 

  22. I.D. Mikheikin, M.Y. Kuznetsov, E.V. Makhonina, V.S. Pervov, J. Mater. Synth. Process. 10, 53 (2002)

    Article  Google Scholar 

  23. A. Bylinskii, D. Gangloff, I. Counts, V. Vuletić, Nat. Mater. 15, 717 (2016)

    Article  ADS  Google Scholar 

  24. J. Kiethe, R. Nigmatullin, D. Kalincev, T. Schmirander, T.E. Mehlstäubler, Nat. Commun. 8, 15364 (2017)

    Article  ADS  Google Scholar 

  25. S.N. Coppersmith, Phys. Rev. A 36, 3375 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  26. B. Hu, J.Y. Zhu, Phys. Rev. E 65, 016202 (2001)

    Article  ADS  Google Scholar 

  27. A. Patrykiejew, S. Sokolowski, Condens. Matter Phys. 17, 43601:1 (2014)

    Google Scholar 

  28. J. Zhang, X. Chen, R. Chen, L. Nie, Z. Zheng, Eur. Phys. J. B 87, 122 (2014)

    Article  ADS  Google Scholar 

  29. X. Zhang, L. Nie, K. Ma, J. Zhang, J. Wu, F. Ye, C. Xiao, Mod. Phys. Lett. B 32, 1850017 (2018)

    Article  ADS  Google Scholar 

  30. P. Bak, Rep. Prog. Phys. 45, 587 (1982)

    Article  ADS  Google Scholar 

  31. J.M. Bofill, J. Ribas-Ariño, S.P. García, W. Quapp, J. Chem. Phys. 147, 152710 (2017)

    Article  ADS  Google Scholar 

  32. W. Quapp, B. Schmidt, Theor. Chem. Acc. 128, 47 (2011)

    Article  Google Scholar 

  33. B. Schmidt, W. Quapp, Theor. Chem. Acc. 132, 1305 (2012)

    Article  Google Scholar 

  34. C. Baesens, R.S. MacKay, Nonlinearity 17, 567 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  35. Z. Zheng, B. Hu, G. Hu, Phys. Rev. B 58, 5453 (1998)

    Article  ADS  Google Scholar 

  36. O.M. Braun, A.R. Bishop, J. Röder, Phys. Rev. Lett. 79, 3692 (1997)

    Article  ADS  Google Scholar 

  37. O.M. Braun, B. Hu, A. Zeltser, Phys. Rev. E 62, 4235 (2000)

    Article  ADS  Google Scholar 

  38. O.M. Braun, H. Zhang, B. Hu, J. Tekić, Phys. Rev. E 67, 06602 (2003)

    Article  Google Scholar 

  39. A.B. Kolton, D. Dominguez, N. Gronbech-Jensen, Phys. Rev. Lett. 86, 4112 (2001)

    Article  ADS  Google Scholar 

  40. S. Slijepčević, Chaos 25, 083108 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  41. I. Sokolović, P. Mali, J. Odavić, S. Radosevic, S.Y. Medvedeva, A.E. Botha, Y.M. Shukrinov, J. Tekić, Phys. Rev. E 96, 022210 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  42. J. Odavić, P. Malik, J. Tekić, M. Pantic, M. Pavkov-Hrvojevic, Commun. Nonlinear Sci. Numer. Simul. 47, 100 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  43. H. Li, S. Liu, Discrete Dyn. Nat. Soc. 47, 7081804 (2018)

    Google Scholar 

  44. M. Hirano, K. Shinjo, Phys. Rev. B 41, 11837 (1990)

    Article  ADS  Google Scholar 

  45. A. Socoliuc, R. Bennewitz, E. Gnecco, E. Meyer, Phys. Rev. Lett. 92, 134301 (2004)

    Article  ADS  Google Scholar 

  46. M. Dienwiebel, G.S. Verhoeven, N. Pradeep, J.W.M. Frenken, J.A. Heimberg, H.W. Zandbergen, Phys. Rev. Lett. 92, 126101 (2004)

    Article  ADS  Google Scholar 

  47. E. Gnecco, S. Maier, E. Meyer, J. Phys.: Condens. Matter 20, 354004 (2008)

    Google Scholar 

  48. E. Meyer, E. Gnecco, Friction 2, 106 (2014)

    Article  Google Scholar 

  49. A. Bylinskii, D. Gangloff, V. Vuletić, Science 348, 1115 (2015)

    Article  ADS  Google Scholar 

  50. W. Quapp, M. Hirsch, O. Imig, D. Heidrich, J. Comput. Chem. 19, 1087 (1998)

    Article  Google Scholar 

  51. W. Quapp, M. Hirsch, D. Heidrich, Theor. Chem. Acc. 100, 285 (1998)

    Article  Google Scholar 

  52. J.M. Bofill, J.M. Anglada, Theor. Chem. Acc. 105, 463 (2001)

    Article  Google Scholar 

  53. R. Crehuet, J.M. Bofill, J.M. Anglada, Theor. Chem. Acc. 107, 130 (2002)

    Article  Google Scholar 

  54. W. Quapp, J. Theor. Comput. Chem. 2, 385 (2003)

    Article  Google Scholar 

  55. W. Quapp, J.M. Bofill, Theor. Chem. Acc. 135, 113 (2016)

    Article  Google Scholar 

  56. W. Quapp, J.M. Bofill, J. Ribas-Ariño, J. Phys. Chem. A 121, 2820 (2017)

    Article  Google Scholar 

  57. M. Hirsch, W. Quapp, J. Mol. Struct. THEOCHEM 683, 1 (2004)

    Article  Google Scholar 

  58. B. Peters, A. Heyden, A.T. Bell, A. Chakraborty, J. Chem. Phys. 120, 7877 (2004)

    Article  ADS  Google Scholar 

  59. W. Quapp, J. Chem. Phys. 122, 174106 (2005)

    Article  ADS  Google Scholar 

  60. D.E. Makarov, J. Chem. Phys. 144, 030901 (2016)

    Article  ADS  Google Scholar 

  61. W. Quapp, J.M. Bofill, J. Comput. Chem. 37, 2467 (2016)

    Article  Google Scholar 

  62. M. Basilevsky, A. Shamov, Chem. Phys. 60, 347 (1981)

    Article  Google Scholar 

  63. D.K. Hoffmann, R.S. Nord, K. Ruedenberg, Theor. Chim. Acta 69, 265 (1986)

    Article  Google Scholar 

  64. W. Quapp, Theor. Chim. Acta 75, 447 (1989)

    Article  Google Scholar 

  65. H.B. Schlegel, Theor. Chim. Acta 83, 15 (1992)

    Article  Google Scholar 

  66. J.Q. Sun, K. Ruedenberg, J. Chem. Phys. 98, 9707 (1993)

    Article  ADS  Google Scholar 

  67. M. Hirsch, W. Quapp, Chem. Phys. Lett. 395, 150 (2004)

    Article  ADS  Google Scholar 

  68. J.M. Bofill, W. Quapp, M. Caballero, J. Chem. Theory Comput. 8, 927 (2012)

    Article  Google Scholar 

  69. I. Garcia-Mata, O.V. Zhirov, D.L. Shepelyansky, Eur. Phys. J. D 41, 325 (2007)

    Article  ADS  Google Scholar 

  70. D. Heidrich, W. Quapp, Theor. Chim. Acta 70, 89 (1986)

    Article  Google Scholar 

  71. Y.G. Khait, A.I. Panin, A.S. Averyanov, Int. J. Quantum Chem. 54, 329 (1994)

    Article  Google Scholar 

  72. P. Chaudhury, S. Bhattacharyya, Chem. Phys. 241, 313 (1999)

    Article  Google Scholar 

  73. R.M. Minyaev, I.V. Getmanskii, W. Quapp, Russ. J. Phys. Chem. 78, 1494 (2004)

    Google Scholar 

  74. G.S. Ezra, S. Wiggins, J. Phys. A 42, 205101 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  75. P. Collins, G.S. Ezra, S. Wiggins, J. Chem. Phys. 134, 244105 (2011)

    Article  ADS  Google Scholar 

  76. J.M. Bofill, W. Quapp, M. Caballero, Chem. Phys. Lett. 583, 203 (2013)

    Article  ADS  Google Scholar 

  77. W. Quapp, J.M. Bofill, Int. J. Quantum Chem. 115, 1635 (2015)

    Article  Google Scholar 

  78. W. Quapp, E. Kraka, D. Cremer, J. Phys. Chem. 111, 11287 (2007)

    Article  Google Scholar 

  79. H. Joo, E. Kraka, W. Quapp, D. Cremer, Mol. Phys. 105, 2697 (2007)

    Article  ADS  Google Scholar 

  80. M. Hirsch, W. Quapp, D. Heidrich, Phys. Chem. Chem. Phys. 1, 5291 (1999)

    Article  Google Scholar 

  81. W. Quapp, V. Melnikov, Phys. Chem. Chem. Phys. 3, 2735 (2001)

    Article  Google Scholar 

  82. W. Quapp, J. Bofill, A. Aguilar-Mogas, Theor. Chem. Acc. 129, 803 (2011)

    Article  Google Scholar 

  83. W. Quapp, J. Math. Chem. 54, 137 (2015)

    Article  MathSciNet  Google Scholar 

  84. D.R. Yarkony, J. Chem. Phys. 123, 204101 (2005)

    Article  ADS  Google Scholar 

  85. W. Quapp, J.M. Bofill, M. Caballero, Chem. Phys. Lett. 541, 122 (2012)

    Article  ADS  Google Scholar 

  86. T. Pruttivarasin, M. Ramm, I. Talukdar, A. Kreuter, H. Haeffner, New J. Phys. 13, 075012 (2011)

    Article  ADS  Google Scholar 

  87. E. Panizon, G.E. Santoro, E. Tosatti, G. Riva, N. Manini, Phys. Rev. B 97, 104104 (2018)

    Article  ADS  Google Scholar 

  88. D. Mandelli, R. Guerra, W. Ouyang, M. Urbakh, A. Vanossi, Phys. Rev. Mater. 2, 046001 (2018)

    Article  Google Scholar 

  89. M. Weiss, F.J. Elmer, Z. Phys. B 69, 55 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Quapp.

Additional information

Supplementary material in the form of one pdf file available from the Journal web page at https://doi.org/10.1140/epjb/e2019-90703-0

Electronic supplementary material

Supplementary data

PDF file

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quapp, W., Bofill, J.M. A model for a driven Frenkel–Kontorova chain. Eur. Phys. J. B 92, 95 (2019). https://doi.org/10.1140/epjb/e2019-90703-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-90703-0

Keywords

Navigation