Skip to main content
Log in

Reactive explorers to unravel network topology

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A procedure is developed and tested to recover the distribution of connectivity of an a priori unknown network, by sampling the dynamics of an ensemble made of reactive walkers. The relative weight between reaction and relocation is gauged by a scalar control parameter, which can be adjusted at will. Different equilibria are attained by the system, following the externally imposed modulation, and reflecting the interplay between reaction and diffusion terms. The information gathered on the observation node is used to predict the stationary density as displayed by the system, via a direct implementation of the celebrated Heterogeneous Mean Field (HMF) approximation. This knowledge translates into a linear problem which can be solved to return the entries of the sought distribution. A variant of the model is then considered which consists in assuming a localized source where the reactive constituents are injected, at a rate that can be adjusted as a stepwise function of time. The linear problem obtained when operating in this setting allows one to recover a fair estimate of the underlying system size. Numerical experiments are carried so as to challenge the predictive ability of the theory.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.E.J. Newman, Networks: An Introduction (OUP, Oxford, 2010)

  2. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.U. Hwang, Phys. Rep. 424, 175 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  3. R. Albert, A.-L. Barabasi, Rev. Mod. Phys. 74, 47 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  4. A. Barrat, M. Barthélemy, A. Vespignani, in Dynamical Processes on Complex Networks, 1st edn. (CUP, Cambridge, 2008)

  5. G. Caldarelli, in Scale Free Networks: Complex Webs in Nature and Technology, 1st edn. (Oxford Finance Series, 2007)

  6. J.D. Noh, H. Rieger, Phys. Rev. Lett. 92, 118701 (2004)

    Article  ADS  Google Scholar 

  7. R. Sinatra, J. Gómez-Gardeñes, R. Lambiotte, V. Nicosia, V. Latora, Phys. Rev. E 83, 030103(R) (2011)

    Article  ADS  Google Scholar 

  8. V. Nicosia, F. Bagnoli, V. Latora, Europhys. Lett. 94, 68009 (2011)

    Article  ADS  Google Scholar 

  9. N. Masuda, M.A. Porter, R. Lambiotte, Phys. Rep. 716–717, 1 (2017)

    Article  Google Scholar 

  10. S. Manfredi, E. Di Tucci, V. Latora, arxiv.1801.01332 (2017)

  11. E. Schneidman, M.J. Berry, R. Segev, W. Bialek, Nature 440, 04701 (2006)

    Article  Google Scholar 

  12. S. Coccoa, S. Leiblerb, R. Monasson, PNAS 106, 14058 (2009)

    Article  ADS  Google Scholar 

  13. R. Burioni, M. Casartelli, M. di Volo, R. Livi, A. Vezzani, Sci. Rep. 4, 4336 (2014)

    Article  ADS  Google Scholar 

  14. M. di Volo, R. Burioni, M. Casartelli, R. Livi, A. Vezzani, Phys. Rev. E 90, 022811 (2014)

    Article  ADS  Google Scholar 

  15. M. di Volo, R. Burioni, M. Casartelli, R. Livi, A. Vezzani, Phys. Rev. E 93, 012305 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  16. L. Michiels van Kessenich, L. de Arcangelis, H.J. Herrmann, Sci. Rep. 6, 32071 (2016)

    Article  ADS  Google Scholar 

  17. R. Russo, H.J. Herrmann, L. de Arcangelis, Sci. Rep. 4, 4312 (2014)

    Article  ADS  Google Scholar 

  18. S.G. Shandilya, M. Timme, New J. Phys. 13, 013004 (2011)

    Article  Google Scholar 

  19. I. Malvestio, T. Kreuz, R.G. Andrzejak, Phys. Rev. E 96, 022203 (2017)

    Article  ADS  Google Scholar 

  20. M. Asllani, T. Carletti, F. Di Patti, D. Fanelli, F. Piazza, Phys. Rev. Lett. 120, 158301 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  21. T.M. Ligget, Stochastic Interacting Systems: Contact, Voter and Exclusion Processes, 1st edn. (Springer-Verlag, Berlin, 1999)

  22. E. Almaas, R.V. Kulkarni, D. Stroud, Phys. Rev. E 68, 056105 (2003)

    Article  ADS  Google Scholar 

  23. S. Kwon, Y. Kim, Phys. Rev. E 84, 041103 (2011)

    Article  ADS  Google Scholar 

  24. D. Fanelli, A.J. Mckane, Phys. Rev. E 82, 021113 (2010)

    Article  ADS  Google Scholar 

  25. M. Galanti, D. Fanelli, F. Piazza, Front. Phys. 4, 33 (2016)

    Article  Google Scholar 

  26. A.E. Fernando, K.A. Landman, M.J. Simpson, Phys. Rev. E 81, 011903 (2010)

    Article  ADS  Google Scholar 

  27. K.A. Landman, A.E. Fernando, Physica A 390, 3742 (2011)

    Article  ADS  Google Scholar 

  28. M. Galanti, D. Fanelli, A. Maritan, F. Piazza, Europhys. Lett. 107, 20006 (2014)

    Article  ADS  Google Scholar 

  29. M. Galanti, S. Traytak, D. Fanelli, F. Piazza, Phys. Chem. Chem. Phys. 18, 15950 (2016)

    Article  Google Scholar 

  30. S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Rev. Mod. Phys. 80, 1275 (2008)

    Article  ADS  Google Scholar 

  31. F. Pittorino, M. Ibanez Berganza, M. di Volo, A. Vezzani, R. Burioni, Phys. Rev. Lett. 118, 098102 (2017)

    Article  ADS  Google Scholar 

  32. G. Cencetti, F. Battiston, D. Fanelli, V. Latora, Phys. Rev. E 98, 052302 (2018)

    Article  ADS  Google Scholar 

  33. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duccio Fanelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adam, I., Fanelli, D., Carletti, T. et al. Reactive explorers to unravel network topology. Eur. Phys. J. B 92, 99 (2019). https://doi.org/10.1140/epjb/e2019-90700-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-90700-3

Keywords

Navigation