Skip to main content
Log in

Negative differential thermal resistance phenomenon in the FK-ϕ4 lattices

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Negative differential thermal resistance (NDTR) was investigated in a system consisting of two dissimilar anharmonic lattices exemplified by Frenkel–Kontorova (FK) lattices and ϕ4 lattices (FK-ϕ4). The results indicate that: (i) For appropriate periodic on-site potentials of FK lattice, as the system is asymmetric, an NDTR phenomenon will appear. (ii) The NDTR phenomenon also depends on the quartic on-site potentials of ϕ4 lattice as the other parameters remain unchanged. With the increment of the quartic on-site potential, the NDTR phenomenon will gradually disappear. (iii) As the system is asymmetric, the averaged environmental reference temperature and coupling displacement cannot only enhance NDTR phenomenon but also regulate thermal rectifier of the system as a thermal switch. (IV) Along with an increasing atomic number of the system, the NDTR phenomenon gradually disappears. Our results indicate that the on-site potential of nonlinear lattices plays a crucial role in the design of thermal devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Maldovan, Nature 53, 209 (2013)

    Article  ADS  Google Scholar 

  2. N.B. Li, J. Ren, L. Wang, Y. Zhang, P. Hänggi, B. Li, Rev. Mod. Phys. 84, 1045 (2012)

    Article  ADS  Google Scholar 

  3. S. Lepria, R. Livib, A. Politib, Phys. Rep. 377, 1 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  4. V.P. Carey et al., Nanoscale Microscale Thermophys. Eng. 12, 1 (2008)

    Article  ADS  Google Scholar 

  5. N.B. Li, B.W. Li, AIP Adv. 2, 041408 (2012)

    Article  ADS  Google Scholar 

  6. B. Li, L. Wang, G. Casati, Phys. Rev. Lett. 93, 184301 (2004)

    Article  ADS  Google Scholar 

  7. T.S. Komatsu, N. Ito, Phys. Rev. E 81, 010103(R) (2010)

    Article  ADS  Google Scholar 

  8. B. Li, L. Wang, G. Casati, Appl. Phys. Lett. 88, 143501 (2006)

    Article  ADS  Google Scholar 

  9. T. Ojanen, A.P. Jauho, Phys. Rev. Lett. 100, 155902 (2008)

    Article  ADS  Google Scholar 

  10. L. Wang, B. Li, Phys. Rev. Lett. 99, 177208 (2007)

    Article  ADS  Google Scholar 

  11. L. Wang, B. Li, Phys. Rev. Lett. 101, 267203 (2008)

    Article  ADS  Google Scholar 

  12. C.W. Chang, D. Okawa, A. Majumdar, A. Zettl, Science 314, 1121 (2006)

    Article  ADS  Google Scholar 

  13. J. Ren, B. Li, Phys. Rev. E 81, 021111 (2010)

    Article  ADS  Google Scholar 

  14. N. Li, F. Zhan, P. Hänggi, B. Li, Phys. Rev. E 80, 011125 (2009)

    Article  ADS  Google Scholar 

  15. N. Yang, N.B. Li, L. Wang, B. Li, Phys. Rev. B 76, 020301(R) (2007)

    Article  ADS  Google Scholar 

  16. S. Liu, X.F. Xu, R.G. Xie, G. Zhang, B.W. Li, Eur. Phys. J. B 85, 337 (2012)

    Article  ADS  Google Scholar 

  17. N. Li, P. Hänggi, B. Li, Europhys. Lett. 84, 40009 (2008)

    Article  ADS  Google Scholar 

  18. B. Hu, L. Yang, Y. Zhang, Phys. Rev. Lett. 97, 124302 (2006)

    Article  ADS  Google Scholar 

  19. M. Peyrard, Europhys. Lett. 76, 49 (2006)

    Article  ADS  Google Scholar 

  20. D. Segal, A. Nitzan, Phys. Rev. Lett. 94, 034301 (2005)

    Article  ADS  Google Scholar 

  21. M. Terraneo, M. Peyrard, G. Casati, Phys. Rev. Lett. 88, 094302 (2002)

    Article  ADS  Google Scholar 

  22. L. Wang, D.H. He, B. Hu, Phys. Rev. Lett. 105, 160601 (2010)

    Article  ADS  Google Scholar 

  23. D. Roy, Phys. Rev. E 86, 041102 (2012)

    Article  ADS  Google Scholar 

  24. O.M. Braun, Y.S. Kivshar, Phys. Rep. 306, 1 (1998)

    Article  ADS  Google Scholar 

  25. B. Hu, B. Li, H. Zhao, Phys. Rev. E 57, 2992 (1998)

    Article  ADS  Google Scholar 

  26. L.R. Nie, L.L. Yu, Z.G. Zheng, C.Z. Shu, Phys. Rev. E 87, 062142 (2013)

    Article  ADS  Google Scholar 

  27. D.H. He, B.Q. Ai, H.K. Chan, B. Hu, Phys. Rev. E 81, 041131 (2010)

    Article  ADS  Google Scholar 

  28. G. Augello, D. Valenti, B. Spagnolo, Eur. Phys. J. B 78, 225 (2010)

    Article  ADS  Google Scholar 

  29. A. Fiasconaro, B. Spagnolo, Phys. Rev. E 83, 041122 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Ma, K., Zhang, J. et al. Negative differential thermal resistance phenomenon in the FK-ϕ4 lattices. Eur. Phys. J. B 92, 115 (2019). https://doi.org/10.1140/epjb/e2019-90681-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-90681-1

Keywords

Navigation