Tight-binding study of the structure of the electronic energy band of the quaternary solid solutions series CuIn1−xAlxTe2

  • Jesús Jiménez Arias
  • Daniel Suescun Díaz
  • Diego A. Rasero CausilEmail author
Regular Article


We report on the electronic properties of the solid solutions series CuIn1−xAlxTe2 using the tight-binding (TB) method and the virtual crystal approximation (VCA) for different values of amounts of Al, considering the ideal case and that with distortions. The parameters TB and VCA were determined, which allow the best fit of the theoretical results to the linear behavior reported in the literature of the band gap as a function of x. Using these parameters, we calculate the structure of the energy bands, obtaining that this material is a direct semiconductor at Γ for all the concentrations. In addition, discrimination of the orbitals in the bands was carried out, finding the existence of s orbitals of the cations Cu and (In,Al), and s and p orbitals of the anion Te in the lower part of the conduction band, which indicates the possibility of bonding between the cations and the anions, which would explain the chemical stability of the compound under strong illumination and high temperatures, making it a useful material for implementation in solar panels.

Graphical abstract


Solid State and Materials 


  1. 1.
    W. Beek, M. Wienk, R. Janssen, J. Mater. Chem. 15, 2985 (2005) CrossRefGoogle Scholar
  2. 2.
    Y.-Y. Lin, T.-H. Chu, S.-S. Li, C.-H. Chuang, C.-H. Chang, W.-F. Su, Ch.-P. Chang, M.-W. Chu, Ch.-W. Chen, J. Am. Chem. Soc. 131, 3644 (2009) CrossRefGoogle Scholar
  3. 3.
    W. Huynh, J. Dittmer, A.P. Alivisatos, Science 295, 2425 (2002) ADSCrossRefGoogle Scholar
  4. 4.
    Y. Kang, D. Kim, Sol. Energy Mater. Sol. Cells 90, 166 (2006) CrossRefGoogle Scholar
  5. 5.
    D. Cui, J. Xu, T. Zhu, G. Paradee, S. Ashok, M. Gerhold, Appl. Phys. Lett. 88, 183111 (2006) ADSCrossRefGoogle Scholar
  6. 6.
    A. Watt, D. Blake, J. Warner, E. Thomsen, E. Tavenner, H. Rubinsztein-Dunlop, P. Meredith, J. Phys. D: Appl. Phys. 38, 2006 (2005) ADSCrossRefGoogle Scholar
  7. 7.
    Y.-T. Yen, Y.-K. Lin, S.-H. Chang, H.-F. Hong, H.-Y. Tuan, L.-Y. Chueh, Nanoscale Res. Lett. 8, 329 (2013) ADSCrossRefGoogle Scholar
  8. 8.
    D. Rasero, A. Portacio, J. Rodríguez, Cienc. En Desarro. 7, 9 (2016) CrossRefGoogle Scholar
  9. 9.
    D. Haneman, Crit. Rev. Solid State Mater. Sci. 14, 377 (1988) ADSCrossRefGoogle Scholar
  10. 10.
    V. Nadenau, U. Rau, A. Jasenek, H.-W. Schock, J. Appl. Phys. 87, 584 (2000) ADSCrossRefGoogle Scholar
  11. 11.
    J. Hedstrom, H. Ohlsen, M. Bodegard, A. Kylner, L. Stolt, D. Hariskos, M. Ruckh, H.-W. Schock, in Photovoltaic Specialists Conference 1993 (Conference Record of the Twenty Third IEEE, Louisville, KY, USA, 1993), p. 364 Google Scholar
  12. 12.
    M. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, R. Noufi, Prog. Photovolt.: Res. Appl. 7, 311 (1999) CrossRefGoogle Scholar
  13. 13.
    M. Contreras, A. Gabor, A. Tennant, S. Asher, J. Tuttle, R. Noufi, Prog. Photovolt.: Res. Appl. 2, 287 (1994) CrossRefGoogle Scholar
  14. 14.
    J. Jaffe, A. Zunger, Phys. Rev. B 29, 1882 (1984) ADSCrossRefGoogle Scholar
  15. 15.
    W. Honeyman, K. Wilkinson, J. Phys. D: Appl. Phys. 4, 1182 (1971) ADSCrossRefGoogle Scholar
  16. 16.
    J. Álvarez García Characterisation of CuInS2 films for solar cell applications by Raman spectroscopy, Ph.D. thesis, Universitat de Barcelona, Barcelona, 2002, p. 26 Google Scholar
  17. 17.
    J. Zhang, R. Liu, N. Cheng, Y. Zhang, J. Yang, C. Uher, X. Shi, L. Chen, W. Zhang, Adv. Mater. 26, 3848 (2014) CrossRefGoogle Scholar
  18. 18.
    R. Liu, L. Xi, H. Liu, X. Shi, W. Zhang, L. Chen, Chem. Commun. 48, 3818 (2012) CrossRefGoogle Scholar
  19. 19.
    Ch. Hu, K. Peng, G. Wang, L. Guo, G. Wang, X. Zhou, in Symposium S/W/CC-Advanced Materials for Photovoltaic, Fuel Cell and Electrolyzer, and Thermoelectric Energy Conversion (MRS Online Proceedings Library Archive, 2015), p. 1735 Google Scholar
  20. 20.
    J. Slater, G. Koster, Phys. Rev. 94, 1498 (1954) ADSCrossRefGoogle Scholar
  21. 21.
    F. Blom, H. Nachtegaele, J. Devreese, Phys. Rev. B 32, 2334 (1985) ADSCrossRefGoogle Scholar
  22. 22.
    J. Rodríguez, Rev. Mex. Fis. 45, 584 (1999) Google Scholar
  23. 23.
    J. Rodríguez, L. Quiroga, A. Camacho, R. Baquero, Phys. Rev. B 59, 1555 (1999) ADSCrossRefGoogle Scholar
  24. 24.
    W. Press, S. Teukolsky, W. Vetterling, B. Flannery, Numerical Recipes in FORTRAN (Cambridge University Press, Cambridge, 1992) Google Scholar
  25. 25.
    H. Tototzintle-Huitle, J. Rodríguez, R. Baquero, Rev. Mex. Fis. 54, 58 (2008) Google Scholar
  26. 26.
    J. Jaffe, A. Zunger, Phys. Rev. B 28, 5822 (1983) ADSCrossRefGoogle Scholar
  27. 27.
    W. Harrison, Electronic Structure and the Properties of Solids (Dover Publications, Inc., New York, USA 1989) Google Scholar
  28. 28.
    R. Hill, J. Phys. C: Solid State Phys. 7, 521 (1974) ADSCrossRefGoogle Scholar
  29. 29.
    D. Olguín, Rev. Mex. Fis. 45, 271 (1999) Google Scholar
  30. 30.
    D. Olguín, R. Baquero, R. de Coss, Rev. Mex. Fis. 47, 43 (2001) Google Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Ciencias Naturales, Grupo de Física Aplicada FIASUR, Universidad SurcolombianaA.A. 385 NeivaColombia

Personalised recommendations