Skip to main content
Log in

Coupled elastic membranes model for quantum heat transport in semiconductor nanowires

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Presented here is a nanowire model, consisting of coupled elastic membranes with the purpose of investigating thermal transport in quasi-one-dimensional quantum systems. The vibrations of each elastic membrane are quantized and the flow of the vibrational energy between adjacent membranes is allowed. The ends of the nanowire are attached to thermal baths held at different temperatures. We derived quantum master equation for energy flow across the nanowire and obtained thermal currents and other key observables. We study the effects of a disordered boundary on the thermal current by randomizing the membrane radii. We evaluate the model as a nanowire analogue as well as study the effects of a disordered boundary on thermal conductivity. The calculations show that the membrane lattice model demonstrates diameter phonon confinement and a severe reduction in thermal conductivity due to surface roughness which is characteristic of semiconductor nanowires. The surface roughness also produces a length dependence of the thermal conductivity of the form κ = αLβ, with β dependent on disorder characteristics, in the otherwise ballistic regime. Finally, the parameters of the model are fitted to available experimental data for silicon nanowires and the results of the calculations are assessed against the experimental data.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Rieder, J.L. Lebowitz, E. Lieb, J. Math. Phys. 8, 1073 (1967)

    Article  ADS  Google Scholar 

  2. V. Peshkov, J. Phys. (Moscow) 8, 381 (1944)

    Google Scholar 

  3. R.A. Guyer, J.A. Krumhansl, Phys. Rev. 148, 778 (1966)

    Article  ADS  Google Scholar 

  4. A. Casher, J.L. Lebowitz, J. Math. Phys. 12, 1701 (1971)

    Article  ADS  Google Scholar 

  5. B. Hu, B. Li, H. Zhao, Phys. Rev. E 57, 2992 (1998)

    Article  ADS  Google Scholar 

  6. S. Lepri, R. Livi, A. Politi, Phys. Rev. Lett. 78, 1896 (1997)

    Article  ADS  Google Scholar 

  7. T. Hatano, Phys. Rev. E 59, 1 (1999)

    Article  ADS  Google Scholar 

  8. S. Lepri, R. Livi, A. Politi, Physica D 119, 140 (1998)

    Article  ADS  Google Scholar 

  9. O. Narayan, S. Ramaswamy, Phys. Rev. Lett. 89, 200601 (2002)

    Article  ADS  Google Scholar 

  10. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, A. Majumdar, Appl. Phys. Lett. 83, 2934 (2003)

    Article  ADS  Google Scholar 

  11. T.E. Humphrey, H. Linke, Phys. Rev. Lett. 94, 096601 (2005)

    Article  ADS  Google Scholar 

  12. A. Hochbaum, R. Chen, R.D. Delago, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature 451, 163 (2008)

    Article  ADS  Google Scholar 

  13. N. Mingo, L. Yang, Nano Lett. 3, 1713 (2003)

    Article  ADS  Google Scholar 

  14. L. Liang, B. Li, Phys. Rev. B 73, 153303 (2006)

    Article  ADS  Google Scholar 

  15. A.L. Moore, S.K. Saha, R.S. Prasher, L. Shi, Appl. Phys. Lett. 93, 083112 (2008)

    Article  ADS  Google Scholar 

  16. D. Donadio, G. Galli, Phys. Rev. Lett. 102, 195901 (2009)

    Article  ADS  Google Scholar 

  17. P. Martin, Z. Aksamija, E. Pop, U. Rabaioli, Phys. Rev. Lett. 102, 125503 (2009)

    Article  ADS  Google Scholar 

  18. Y.A. Kosevich, A.V. Savin, Europhys. Lett. 88, 14002 (2009)

    Article  ADS  Google Scholar 

  19. M. Luisier, J. Appl. Phys. 110, 074510 (2011)

    Article  ADS  Google Scholar 

  20. C. Blanc, A. Rajabpour, S. Volz, T. Fournier, O. Bourgeois, Appl. Phys. Lett. 103, 043109 (2013)

    Article  ADS  Google Scholar 

  21. J. Carrete, L.J. Gallego, L.M. Varela, Phys. Rev. B 84, 075403 (2011)

    Article  ADS  Google Scholar 

  22. J. Sadhu, S. Sinha, Phys. Rev. B 84, 115450 (2011)

    Article  ADS  Google Scholar 

  23. J. Lim, K. Hippalgaonkar, S.C. Andrews, A. Majumdar, P. Yang, Nano Lett. 12, 2475 (2012)

    Article  ADS  Google Scholar 

  24. N. Yang, G. Zhang, B. Li, Nano Today 5, 85 (2010)

    Article  Google Scholar 

  25. J. Maire, R. Anufriev, M. Nomura, Sci. Rep. 7, 41794 (2017)

    Article  ADS  Google Scholar 

  26. N.H. Asmar, Partial differential equations with Fourier series and boundary value problems (Dover Publications, Upper Saddle River, N.J., 2005)

  27. A. Dhar, Phys. Rev. Lett. 86, 5882 (2001)

    Article  ADS  Google Scholar 

  28. C. Hou, J. Xu, W. Ge, J. Li, Model. Simulat. Mater. Sci. Eng. 24, 045005 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian A. Lawn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lawn, J.A., Kosov, D.S. Coupled elastic membranes model for quantum heat transport in semiconductor nanowires. Eur. Phys. J. B 92, 43 (2019). https://doi.org/10.1140/epjb/e2019-90629-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-90629-5

Keywords

Navigation