Micromagnetics and spintronics: models and numerical methods


Computational micromagnetics has become an indispensable tool for the theoretical investigation of magnetic structures. Classical micromagnetics has been successfully applied to a wide range of applications including magnetic storage media, magnetic sensors, permanent magnets and more. The recent advent of spintronics devices has led to various extensions to the micromagnetic model in order to account for spin-transport effects. This article aims to give an overview over the analytical micromagnetic model as well as its numerical implementation. The main focus is put on the integration of spin-transport effects with classical micromagnetics.

Graphical abstract


  1. 1.

    T. Schrefl, G. Hrkac, S. Bance, D. Suess, O. Ertl, J. Fidler, Numerical methods in micromagnetics (finite element method), in Handbook of Magnetism and Advanced Magnetic Materials (John Wiley & Sons, NJ, 2007)

  2. 2.

    Y. Huai, Spin-transfer torque MRAM (STT-MRAM): challenges and prospects, AAPPS Bull. 18, 33 (2008)

    Google Scholar 

  3. 3.

    S.S. Parkin, C. Kaiser, A. Panchula, P.M. Rice, B. Hughes, M. Samant, S.-H. Yang, Giant tunnelling magnetoresistance at room temperature with MgO 100 tunnel barriers, Nat. Mater. 3, 862 (2004)

    ADS  Article  Google Scholar 

  4. 4.

    W. Granig, C. Kolle, D. Hammerschmidt, B. Schaffer, R. Borgschulze, C. Reidl, J. Zimmer, Integrated gigant magnetic resistance based angle sensor, in Proceedings of the IEEE Sensors (2006), pp. 542–545

  5. 5.

    W.F. Brown, Jr., Micromagnetics (Interscience Publisher, New York, 1963)

  6. 6.

    W. Döring, Über die trägheit der wände zwischen weißschen bezirken, Z. Naturforsch. A 3, 373 (1948)

    ADS  MATH  Article  Google Scholar 

  7. 7.

    H. Kronmüller, General micromagnetic theory, in Handbook of Magnetism and Advanced Magnetic Materials (John Wiley & Sons, NJ, 2007)

  8. 8.

    J.E. Miltat, M.J. Donahue, Numerical micromagnetics: finite difference methods, in Handbook of Magnetism and Advanced Magnetic Materials (John Wiley & Sons, NJ, 2007)

  9. 9.

    J. Leliaert, M. Dvornik, J. Mulkers, J.D. Clercq, M.V. Milošević, B.V. Waeyenberge, Fast micromagnetic simulations on GPU – recent advances made with mumax3, J. Phys. D 51, 123002 (2018)

    ADS  Article  Google Scholar 

  10. 10.

    J.D. Jackson, Classical Electrodynamics (John Wiley & Sons, NJ, 2012)

  11. 11.

    D.J. Griffiths, Introduction to Quantum Mechanics (Prentice Hall, New Jersey, 1994)

  12. 12.

    W. Döring, Mikromagnetismus, in Handbuch der Physik, edited by S. Flügge (Springer, Berlin, Heidelberg, 1966), Vol. 18/2, pp. 314–437

  13. 13.

    A. Hubert, R. Schäfer, Magnetic Domains (Springer, Berlin, 1998)

  14. 14.

    I. Dzyaloshinsky, A thermodynamic theory of weak ferromagnetism of antiferromagnetics, J. Phys. Chem. Solids 4, 241 (1958)

    ADS  Article  Google Scholar 

  15. 15.

    T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism, Phys. Rev. 120, 91 (1960)

    ADS  Article  Google Scholar 

  16. 16.

    X. Yu, Y. Onose, N. Kanazawa, J. Park, J. Han, Y. Matsui, N. Nagaosa, Y. Tokura, Real-space observation of a two-dimensional skyrmion crystal, Nature 465, 901 (2010)

    ADS  Article  Google Scholar 

  17. 17.

    X. Yu, M. Mostovoy, Y. Tokunaga, W. Zhang, K. Kimoto, Y. Matsui, Y. Kaneko, N. Nagaosa, Y. Tokura, Magnetic stripes and skyrmions with helicity reversals, Proc. Natl. Acad. Sci. 109, 8856 (2012)

    ADS  Article  Google Scholar 

  18. 18.

    A. Bogdanov, U. Rößler, Chiral symmetry breaking in magnetic thin films and multilayers, Phys. Rev. Lett. 87, 037203 (2001)

    ADS  Article  Google Scholar 

  19. 19.

    D. Cortés-Ortuño, P. Landeros, Influence of the Dzyaloshinskii-Moriya interaction on the spin-wave spectra of thin films, J. Phys. Condens. Matter 25, 156001 (2013)

    ADS  Article  Google Scholar 

  20. 20.

    M.A. Ruderman, C. Kittel, Indirect exchange coupling of nuclear magnetic moments by conduction electrons, Phys. Rev. 96, 99 (1954)

    ADS  Article  Google Scholar 

  21. 21.

    T. Kasuya, A theory of metallic ferro-and antiferromagnetism on Zener’s model, Prog. Theor. Phys. 16, 45 (1956)

    ADS  MATH  Article  Google Scholar 

  22. 22.

    K. Yosida, Magnetic properties of Cu-Mn alloys, Phys. Rev. 106, 893 (1957)

    ADS  Article  Google Scholar 

  23. 23.

    K. Fabian, F. Heider, How to include magnetostriction in micromagnetic models of titanomagnetite grains, Geophys. Res. Lett. 23, 2839 (1996)

    ADS  Article  Google Scholar 

  24. 24.

    Y. Shu, M. Lin, K. Wu, Micromagnetic modeling of magnetostrictive materials under intrinsic stress, Mech. Mater. 36, 975 (2004)

    Article  Google Scholar 

  25. 25.

    L. Torres, L. Lopez-Diaz, E. Martinez, O. Alejos, Micromagnetic dynamic computations including eddy currents, IEEE Trans. Magn. 39, 2498 (2003)

    ADS  Article  Google Scholar 

  26. 26.

    G. Hrkac, M. Kirschner, F. Dorfbauer, D. Suess, O. Ertl, J. Fidler, T. Schrefl, Three-dimensional micromagnetic finite element simulations including eddy currents, J. Appl. Phys. 97, 10E311 (2005)

    Article  Google Scholar 

  27. 27.

    R. Hertel, A. Kákay, J. Magn. Magn. Mater. 369, 189 (2014)

    ADS  Article  Google Scholar 

  28. 28.

    W. Scholz, J. Fidler, T. Schrefl, D. Suess, H. Forster, V. Tsiantos, et al., Scalable parallel micromagnetic solvers for magnetic nanostructures, Comput. Mater. Sci. 28, 366 (2003)

    Article  Google Scholar 

  29. 29.

    D.V. Berkov, Fast switching of magnetic nanoparticles: Simulation of thermal noise effects using the Langevin dynamics, IEEE Trans. Magn. 38, 2489 (2002)

    ADS  Article  Google Scholar 

  30. 30.

    O. Chubykalo, J. Hannay, M. Wongsam, R. Chantrell, J. Gonzalez, Langevin dynamic simulation of spin waves in a micromagnetic model, Phys. Rev. B 65, 184428 (2002)

    ADS  Article  Google Scholar 

  31. 31.

    D.A. Garanin, Fokker-Planck and Landau-Lifshitz-Bloch equations for classical ferromagnets, Phys. Rev. B 55, 3050 (1997)

    ADS  Article  Google Scholar 

  32. 32.

    U. Atxitia, O. Chubykalo-Fesenko, N. Kazantseva, D. Hinzke, U. Nowak, R.W. Chantrell, Micromagnetic modeling of laser-induced magnetization dynamics using the Landau-Lifshitz-Bloch equation, Appl. Phys. Lett. 91, 232507 (2007)

    ADS  Article  Google Scholar 

  33. 33.

    R.F.L. Evans, D. Hinzke, U. Atxitia, U. Nowak, R.W. Chantrell, O. Chubykalo-Fesenko, Stochastic form of the Landau-Lifshitz-Bloch equation, Phys. Rev. B 85, 014433 (2012)

    ADS  Article  Google Scholar 

  34. 34.

    L.D. Landau, E.M. Lifshitz, On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Phys. Z. Sowjetunion 8, 153 (1935)

    MATH  Google Scholar 

  35. 35.

    T.L. Gilbert, A Lagrangian formulation of the gyromagnetic equation of the magnetic field, Phys. Rev. 100, 1243 (1955)

    Google Scholar 

  36. 36.

    T.L. Gilbert, A phenomenological theory of damping in ferromagnetic materials, IEEE Trans. Magn. 40, 3443 (2004)

    ADS  Article  Google Scholar 

  37. 37.

    L.D. Landau, E.M. Lifshitz, Mechanics, in Course of Theoretical Physics (Pergamon Press, Oxford, 1969)

  38. 38.

    J.-E. Wegrowe, M.-C. Ciornei, Magnetization dynamics, gyromagnetic relation, and inertial effects, Am. J. Phys. 80, 607 (2012)

    ADS  Article  Google Scholar 

  39. 39.

    N. Bode, L. Arrachea, G.S. Lozano, T.S. Nunner, F. von Oppen, Current-induced switching in transport through anisotropic magnetic molecules, Phys. Rev. B 85, 115440 (2012)

    ADS  Article  Google Scholar 

  40. 40.

    M. d’Aquino, C. Serpico, G. Miano, Geometrical integration of Landau-Lifshitz-Gilbert equation based on the mid-point rule, J. Comput. Phys. 209, 730 (2005)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  41. 41.

    I. Cimrák, A survey on the numerics and computations for the Landau-Lifshitz equation of micromagnetism, Arch. Comput. Methods Eng. 15, 1 (2007)

    ADS  MathSciNet  Article  Google Scholar 

  42. 42.

    M.N. Baibich, J.M. Broto, A. Fert, F.N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices, Phys. Rev. Lett. 61, 2472 (1988)

    ADS  Article  Google Scholar 

  43. 43.

    G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn, Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange, Phys. Rev. B 39, 4828 1989

    ADS  Article  Google Scholar 

  44. 44.

    J.C. Slonczewski, Current-driven excitation of magnetic multilayers, J. Magn. Magn. Mater. 159, L1 (1996)

    ADS  Article  Google Scholar 

  45. 45.

    L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current, Phys. Rev. B 54, 9353 (1996)

    ADS  Article  Google Scholar 

  46. 46.

    X. Waintal, E.B. Myers, P.W. Brouwer, D. Ralph, Role of spin-dependent interface scattering in generating current-induced torques in magnetic multilayers, Phys. Rev. B 62, 12317 (2000)

    ADS  Article  Google Scholar 

  47. 47.

    D. Worledge, G. Hu, D.W. Abraham, J. Sun, P. Trouilloud, J. Nowak, S. Brown, M. Gaidis, E. O’sullivan, R. Robertazzi, Spin torque switching of perpendicular Ta—CoFeB—MgO-based magnetic tunnel junctions, Appl. Phys. Lett. 98, 022501 (2011)

    ADS  Article  Google Scholar 

  48. 48.

    D. Houssameddine, U. Ebels, B. Delaët, B. Rodmacq, I. Firastrau, F. Ponthenier, M. Brunet, C. Thirion, J.-P. Michel, L. Prejbeanu-Buda et al., Spin-torque oscillator using a perpendicular polarizer and a planar free layer, Nat. Mater. 6, 447 (2007)

    ADS  Article  Google Scholar 

  49. 49.

    J.-V. Kim, Spin-torque oscillators, Solid State Phys. 63, 217 (2012)

    Article  Google Scholar 

  50. 50.

    D.C. Ralph, M.D. Stiles, Spin transfer torques, J. Magn. Magn. Mater. 320, 1190 (2008)

    ADS  Article  Google Scholar 

  51. 51.

    J. Slonczewski, Currents and torques in metallic magnetic multilayers, J. Magn. Magn. Mater. 247, 324 (2002)

    ADS  Article  Google Scholar 

  52. 52.

    J. Xiao, A. Zangwill, M.D. Stiles, Macrospin models of spin transfer dynamics, Phys. Rev. B 72, 014446 (2005)

    ADS  Article  Google Scholar 

  53. 53.

    D. Apalkov, M. Pakala, Y. Huai, Micromagnetic simulation of spin transfer torque switching by nanosecond current pulses, J. Appl. Phys. 99, 08B907 (2006)

    Article  Google Scholar 

  54. 54.

    G.E. Rowlands, I.N. Krivorotov, Magnetization dynamics in a dual free-layer spin-torque nano-oscillator, Phys. Rev. B 86, 094425 (2012)

    ADS  Article  Google Scholar 

  55. 55.

    D.V. Berkov, J. Miltat, Spin-torque driven magnetization dynamics: micromagnetic modeling, J. Magn. Magn. Mater. 320, 1238 (2008)

    ADS  Article  Google Scholar 

  56. 56.

    S.S. Parkin, M. Hayashi, L. Thomas, Magnetic domain-wall racetrack memory, Science 320, 190 (2008)

    ADS  Article  Google Scholar 

  57. 57.

    S. Zhang, Z. Li, Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets, Phys. Rev. Lett. 93, 127204 (2004)

    ADS  Article  Google Scholar 

  58. 58.

    S. Zhang, P. Levy, A. Fert, Mechanisms of spin-polarized current-driven magnetization switching, Phys. Rev. Lett. 88, 236601 (2002)

    ADS  Article  Google Scholar 

  59. 59.

    M. Dyakonov, V. Perel, Current-induced spin orientation of electrons in semiconductors, Phys. Lett. A 35, 459 (1971)

    ADS  Article  Google Scholar 

  60. 60.

    J. Hirsch, Spin Hall effect, Phys. Rev. Lett. 83, 1834 (1999)

    ADS  Article  Google Scholar 

  61. 61.

    S. Murakami, N. Nagaosa, S.-C. Zhang, Dissipationless quantum spin current at room temperature, Science 301, 1348 (2003)

    ADS  Article  Google Scholar 

  62. 62.

    J. Sinova, D. Culcer, Q. Niu, N. Sinitsyn, T. Jungwirth, A. MacDonald, Universal intrinsic spin Hall effect, Phys. Rev. Lett. 92, 126603 (2004)

    ADS  Article  Google Scholar 

  63. 63.

    M. Dyakonov, Magnetoresistance due to edge spin accumulation, Phys. Rev. Lett. 99, 126601 (2007)

    ADS  Article  Google Scholar 

  64. 64.

    C. Petitjean, D. Luc, X. Waintal, Unified drift-diffusion theory for transverse spin currents in spin valves, domain walls, and other textured magnets, Phys. Rev. Lett. 109, 117204 (2012)

    ADS  Article  Google Scholar 

  65. 65.

    C.A. Akosa, W.-S. Kim, A. Bisig, M. Kläui, K.-J. Lee, A. Manchon, Role of spin diffusion in current-induced domain wall motion for disordered ferromagnets, Phys. Rev. B 91, 094411 (2015)

    ADS  Article  Google Scholar 

  66. 66.

    P.M. Haney, H.-W. Lee, K.-J. Lee, A. Manchon, M.D. Stiles, Current induced torques and interfacial spin-orbit coupling: Semiclassical modeling, Phys. Rev. B 87, 174411 (2013)

    ADS  Article  Google Scholar 

  67. 67.

    T. Valet, A. Fert, Theory of the perpendicular magnetoresistance in magnetic multilayers, Phys. Rev. B 48, 7099 1993

    ADS  Article  Google Scholar 

  68. 68.

    Y. Niimi, Y. Kawanishi, D. Wei, C. Deranlot, H. Yang, M. Chshiev, T. Valet, A. Fert, Y. Otani, Giant spin Hall effect induced by skew scattering from bismuth impurities inside thin film CuBi alloys, Phys. Rev. Lett. 109, 156602 (2012)

    ADS  Article  Google Scholar 

  69. 69.

    C. Abert, F. Bruckner, C. Vogler, D. Suess, Efficient micromagnetic modelling of spin-transfer torque and spin-orbit torque, AIP Adv. 8, 056008 (2018)

    ADS  Article  Google Scholar 

  70. 70.

    Y. Tserkovnyak, A. Brataas, G.E. Bauer, Spin pumping and magnetization dynamics in metallic multilayers, Phys. Rev. B 66, 224403 (2002)

    ADS  Article  Google Scholar 

  71. 71.

    J. Mathon, A. Umerski, Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe 001 junction, Phys. Rev. B 63, 220403 (2001)

    ADS  Article  Google Scholar 

  72. 72.

    N.M. Caffrey, T. Archer, I. Rungger, S. Sanvito, Prediction of large bias-dependent magnetoresistance in all-oxide magnetic tunnel junctions with a ferroelectric barrier, Phys. Rev. B 83, 125409 (2011)

    ADS  Article  Google Scholar 

  73. 73.

    W. Butler, X.-G. Zhang, T. Schulthess, J. MacLaren, Spin-dependent tunneling conductance of Fe–MgO–Fe sandwiches, Phys. Rev. B 63, 054416 (2001)

    ADS  Article  Google Scholar 

  74. 74.

    D. Berkov, K. Ramstöck, A. Hubert, Solving micromagnetic problems. towards an optimal numerical method, Phys. Status Solidi a 137, 207 (1993)

    ADS  Article  Google Scholar 

  75. 75.

    C. Seberino, H.N. Bertram, Concise, efficient three-dimensional fast multipole method for micromagnetics, IEEE Trans. Magn. 37, 1078 (2001)

    ADS  Article  Google Scholar 

  76. 76.

    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The art of Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, 2007)

  77. 77.

    A.J. Newell, W. Williams, D.J. Dunlop, A generalization of the demagnetizing tensor for nonuniform magnetization, J. Geophys. Res. Solid Earth 98, 9551 (1993)

    Article  Google Scholar 

  78. 78.

    K.M. Lebecki, M.J. Donahue, M.W. Gutowski, Periodic boundary conditions for demagnetization interactions in micromagnetic simulations, J. Phys. D Appl. Phys. 41, 175005 (2008)

    Article  Google Scholar 

  79. 79.

    B. Krüger, G. Selke, A. Drews, D. Pfannkuche, Fast and accurate calculation of the demagnetization tensor for systems with periodic boundary conditions, IEEE Trans. Magn. 49, 4749 (2013)

    ADS  Article  Google Scholar 

  80. 80.

    Y. Kanai, K. Koyama, M. Ueki, T. Tsukamoto, K. Yoshida, S.J. Greaves, H. Muraoka, Micromagnetic analysis of shielded write heads using symmetric multiprocessing systems, IEEE Trans. Magn. 46, 3337 (2010)

    ADS  Article  Google Scholar 

  81. 81.

    C. Abert, G. Selke, B. Krüger, A. Drews, A fast finite-difference method for micromagnetics using the magnetic scalar potential, IEEE Trans. Magn. 48, 1105 (2012)

    ADS  Article  Google Scholar 

  82. 82.

    S. Fu, W. Cui, M. Hu, R. Chang, M.J. Donahue, V. Lomakin, Finite-difference micromagnetic solvers with the object-oriented micromagnetic framework on graphics processing units, IEEE Trans. Magn. 52, 1 (2016)

    Google Scholar 

  83. 83.

    C.J. García-Cervera, X.-P. Wang, Spin-polarized currents in ferromagnetic multilayers, J. Comput. Phys. 224, 699 (2007)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  84. 84.

    M.J. Donahue, OOMMF user’s guide, version 1.0, Tech. Rep., 1999

  85. 85.

    D. Cortés-Ortuño, W. Wang, R. Pepper, M.-A. Bisotti, T. Kluyver, M. Vousden, H. Fangohr, Fidimag v2.0. https://github.com/computationalmodelling/fidimag (accessed 2019/02/04)

  86. 86.

    D. Berkov, N. Gorn, MicroMagus–package for micromagneticsimulations (2007). http://www.micromagus.de (accessed 2019/02/04)

  87. 87.

    C. Abert, F. Bruckner, C. Vogler, R. Windl, R. Thanhoffer, D. Suess, A full-fledged micromagnetic code in fewer than 70 lines of NumPy, J. Magn. Magn. Mater. 387, 13 (2015)

    ADS  Article  Google Scholar 

  88. 88.

    J. Leliaert, M. Dvornik, J. Mulkers, J. De Clercq, M. Milošević, B. Van Waeyenberge, Fast micromagnetic simulations on GPU–recent advances made with MuMax3, J. Phys. D: Appl. Phys. 51, 123002 (2018)

    ADS  Article  Google Scholar 

  89. 89.

    A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, B. Van Waeyenberge, The design and verification of MuMax3, AIP Adv. 4, 107133 (2014)

    ADS  Article  Google Scholar 

  90. 90.

    G. Selke, B. Krüger, A. Drews, C. Abert, T. Gerhardt, magnum.fd. (2014). https://github.com/micromagnetics/magnum.fd (accessed 2019/02/04)

  91. 91.

    D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics (Cambridge University Press, Cambridge, 2007)

  92. 92.

    Y. Saad, in Iterative Methods for Sparse Linear Systems (SIAM, PA, 2003), Vol. 82

  93. 93.

    Q. Chen, A. Konrad, A review of finite element open boundary techniques for static and quasi-static electromagnetic field problems, IEEE Trans. Magn. 33, 663 (1997)

    ADS  Article  Google Scholar 

  94. 94.

    J. Imhoff, G. Meunier, X. Brunotte, J. Sabonnadiere, An original solution for unbounded electromagnetic 2D- and 3D-problems throughout the finite element method, IEEE Trans. Magn. 26, 1659 (1990)

    ADS  Article  Google Scholar 

  95. 95.

    X. Brunotte, G. Meunier, J.-F. Imhoff, Finite element modeling of unbounded problems using transformations: a rigorous, powerful and easy solution, IEEE Trans. Magn. 28, 1663 (1992)

    ADS  Article  Google Scholar 

  96. 96.

    F. Henrotte, B. Meys, H. Hedia, P. Dular, W. Legros, Finite element modelling with transformation techniques, IEEE Trans. Magn. 35, 1434 (1999)

    ADS  Article  Google Scholar 

  97. 97.

    C. Abert, L. Exl, G. Selke, A. Drews, T. Schrefl, Numerical methods for the stray-field calculation: A comparison of recently developed algorithms, J. Magn. Magn. Mater. 326, 176 (2013)

    ADS  Article  Google Scholar 

  98. 98.

    D. Fredkin, T. Koehler, Hybrid method for computing demagnetizing fields, IEEE Trans. Magn. 26, 415 (1990)

    ADS  Article  Google Scholar 

  99. 99.

    W. Hackbusch, in Hierarchical Matrices: Algorithms and Analysis (Springer, Berlin, 2015), Vol. 49

  100. 100.

    N. Popović, D. Praetorius, Applications of H-matrix techniques in micromagnetics, Computing 74, 177 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  101. 101.

    C.J. Garcia-Cervera, A.M. Roma, “Adaptive mesh refinement for micromagnetics simulations, IEEE Trans. Magn. 42, 1648 (2006)

    ADS  Article  Google Scholar 

  102. 102.

    C. Geuzaine, J.-F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities, Int. J. Numer. Methods Eng. 79, 1309 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  103. 103.

    J. Schöberl, NETGEN an advancing front 2D/3D-mesh generator based on abstract rules, Comput. Vis. Sci. 1, 41 (1997)

    MATH  Article  Google Scholar 

  104. 104.

    C. Geuzaine, F. Henrotte, J.-F. Remacle, E. Marchandise, R. Sabariego, Onelab: open numerical engineering laboratory, in 11e Colloque National en Calcul des Structures (2013)

  105. 105.

    J. Schöberl, C++ 11 Implementation of Finite Elements in NGSolve (Institute for Analysis and Scientific Computing, Vienna University of Technology, 2014)

  106. 106.

    L. Gross, P. Cochrane, M. Davies, H. Muhlhaus, J. Smillie, Escript: numerical modelling with python, in Australian Partnership for Advanced Computing (APAC) Conferene, APAC (2005), Vol. 1, p. 31

  107. 107.

    R. Anderson, A. Barker, J. Bramwell, J. Camier, J. Ceverny, J. Dahm, Y. Dudouit, V. Dobrev, A. Fisher, T. Kolev, D. Medina, M. Stowell, V. Tomov, MFEM: a modular finite element library (2010), DOI: https://doi.org/10.11578/dc.20171025.1248

  108. 108.

    M.S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M.E. Rognes, G.N. Wells, The FEniCS project version 1.5, Arch. Numer. Softw. 3, 9 (2015)

    Google Scholar 

  109. 109.

    S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. Gropp, D. Kaushik et al., Petsc users manual revision 3.8, Tech. Rep., Argonne National Lab.(ANL), Argonne, IL, United States, 2017

  110. 110.

    W. Śmigaj, T. Betcke, S. Arridge, J. Phillips, M. Schweiger, Solving boundary integral problems with bem++, ACM Trans. Math. Softw. (TOMS) 41, 6 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  111. 111.

    N. Albrecht, C. Börst, D. Boysen, S. Christophersen, S. Börm, H2Lib (2016). http://www.h2lib.org (accessed 2019/02/04)

  112. 112.

    M.-A. Bisotti, M. Beg, W. Wang, M. Albert, D. Chernyshenko, D. Cortés-Ortuño, R.A. Pepper, M. Vousden, R. Carey, H. Fuchs, A. Johansen, G. Balaban, L.B.T. Kluyver, H. Fangohr, FinMag (2018). https://github.com/fangohr/finmag (accessed 2019/02/04)

  113. 113.

    C. Abert, L. Exl, F. Bruckner, A. Drews, D. Suess, magnum.fe: a micromagnetic finite-element simulation code based on FEniCS, J. Magn. Magn. Mater. 345, 29 (2013)

    ADS  Article  Google Scholar 

  114. 114.

    C. Abert, M. Ruggeri, F. Bruckner, C. Vogler, G. Hrkac, D. Praetorius, D. Suess, A three-dimensional spin-diffusion model for micromagnetics, Sci. Rep. 5, 14855 (2015)

    ADS  Article  Google Scholar 

  115. 115.

    M. Ruggeri, C. Abert, G. Hrkac, D. Suess, D. Praetorius, Coupling of dynamical micromagnetism and a stationary spin drift-diffusion equation: a step towards a fully self-consistent spintronics framework, Phys. B Condens. Matter 486, 88 (2016)

    ADS  Article  Google Scholar 

  116. 116.

    C. Abert, M. Ruggeri, F. Bruckner, C. Vogler, A. Manchon, D. Praetorius, D. Suess, A self-consistent spin-diffusion model for micromagnetics, Sci. Rep. 6, 16 (2016)

    ADS  Article  Google Scholar 

  117. 117.

    F. Alouges, E. Kritsikis, J.-C. Toussaint, A convergent finite element approximation for Landau-Lifschitz-Gilbert equation, Physica B 407, 1345 (2012)

    ADS  MATH  Article  Google Scholar 

  118. 118.

    M. Sturma, J.-C. Toussaint, D. Gusakova, Geometry effects on magnetization dynamics in circular cross-section wires, J. Appl. Phys. 117, 243901 (2015)

    ADS  Article  Google Scholar 

  119. 119.

    W. Scholz, MagPar (2010). http://www.magpar.net/ (accessed 2019/02/04)

  120. 120.

    T. Fischbacher, M. Franchin, G. Bordignon, H. Fangohr, A systematic approach to multiphysics extensions of finite-element-based micromagnetic simulations: Nmag, IEEE Trans. Magn. 43, 2896 (2007)

    ADS  Article  Google Scholar 

  121. 121.

    D. Suess, T. Schrefl, FEMME (2018). http://suessco.com/simulations/solutions/femme-software/ (accessed 2019/02/04)

  122. 122.

    A. Kakay, E. Westphal, R. Hertel, Speedup of FEM micromagnetic simulations with graphical processing units, IEEE Trans. Magn. 46, 2303 (2010)

    ADS  Article  Google Scholar 

  123. 123.

    R. Chang, S. Li, M. Lubarda, B. Livshitz, V. Lomakin, FastMag: fast micromagnetic simulator for complex magnetic structures, J. Appl. Phys. 109, 07D358 (2011)

    Article  Google Scholar 

  124. 124.

    E. Kritsikis, A. Vaysset, L. Buda-Prejbeanu, F. Alouges, J.-C. Toussaint, Beyond first-order finite element schemes in micromagnetics, J. Comput. Phys. 256, 357 (2014)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  125. 125.

    L. Exl, T. Schrefl, Non-uniform FFT for the finite element computation of the micromagnetic scalar potential, J. Comput. Phys. 270, 490 (2014)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  126. 126.

    D. Apalkov, P. Visscher, Fast multipole method for micromagnetic simulation of periodic systems, IEEE Trans. Magn. 39, 3478 (2003)

    ADS  Article  Google Scholar 

  127. 127.

    P. Palmesi, L. Exl, F. Bruckner, C. Abert, D. Suess, Highly parallel demagnetization field calculation using the fast multipole method on tetrahedral meshes with continuous sources, J. Magn. Magn. Mater. 442, 409 (2017)

    ADS  Article  Google Scholar 

  128. 128.

    L. Exl, W. Auzinger, S. Bance, M. Gusenbauer, F. Reichel, T. Schrefl, Fast stray field computation on tensor grids, J. Comput. Phys. 231, 2840 (2012)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  129. 129.

    L. Exl, C. Abert, N.J. Mauser, T. Schrefl, H.P. Stimming, D. Suess, FFT-based Kronecker product approximation to micromagnetic long-range interactions, Math. Models Methods Appl. Sci. 24, 1877 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  130. 130.

    D. Suess, V. Tsiantos, T. Schrefl, J. Fidler, W. Scholz, H. Forster, R. Dittrich, J. Miles, Time resolved micromagnetics using a preconditioned time integration method, J. Magn. Magn. Mater. 248, 298 (2002)

    ADS  Article  Google Scholar 

  131. 131.

    E. Fehlberg, Low-order classical Runge-Kutta formulas with stepsize control and their application to some heat transfer problems, NASA Technical Report, Vol. 315, 1969

  132. 132.

    J.R. Dormand, P.J. Prince, A family of embedded Runge-Kutta formulae, J. Comput. Appl. Math. 6, 19 (1980)

    MathSciNet  MATH  Article  Google Scholar 

  133. 133.

    R.L. Burden, J.D. Faires, Numerical Analysis (Cengage Learning, MA, 2010)

  134. 134.

    F. Alouges, A new finite element scheme for landau-lifchitz equations, Discrete Contin. Dyn. Syst. Ser. S 1, 187 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  135. 135.

    P. Goldenits, G. Hrkac, D. Praetorius, D. Suess, An effective integrator for the Landau-Lifshitz-Gilbert equation, in Proceedings of Mathmod 2012 Conference (2012)

  136. 136.

    M. Ruggeri, Coupling and numerical integration of the Landau-Lifshitz-Gilbert equation, Ph.D. thesis, TU Wien, 2016

  137. 137.

    C. Abert, G. Hrkac, M. Page, D. Praetorius, M. Ruggeri, D. Suess, Spin-polarized transport in ferromagnetic multilayers: An unconditionally convergent FEM integrator, Comput. Math. Appl. 68, 639 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  138. 138.

    A.C. Hindmarsh, P.N. Brown, K.E. Grant, S.L. Lee, R. Serban, D.E. Shumaker, C.S. Woodward, Sundials: Suite of nonlinear and differential/algebraic equation solvers, ACM Trans. Math. Softw. (TOMS) 31, 363 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  139. 139.

    R. Hertel, Micromagnetic simulations of magnetostatically coupled nickel nanowires, J. Appl. Phys. 90, 5752 (2001)

    ADS  Article  Google Scholar 

  140. 140.

    J. Fischbacher, A. Kovacs, H. Oezelt, T. Schrefl, L. Exl, J. Fidler, D. Suess, N. Sakuma, M. Yano, A. Kato et al., Nonlinear conjugate gradient methods in micromagnetics, AIP Adv. 7, 045310 (2017)

    ADS  Article  Google Scholar 

  141. 141.

    L. Exl, S. Bance, F. Reichel, T. Schrefl, H. Peter Stimming, N.J. Mauser, LaBonte’s method revisited: An effective steepest descent method for micromagnetic energy minimization, J. Appl. Phys. 115, 17D118 (2014)

    Article  Google Scholar 

  142. 142.

    E. Weinan, W. Ren, E. Vanden-Eijnden, Simplified and improved string method for computing the minimum energy paths in barrier-crossing events, J. Chem. Phys. 126, 164103 (2007)

    ADS  Article  Google Scholar 

  143. 143.

    R. Dittrich, T. Schrefl, D. Suess, W. Scholz, H. Forster, J. Fidler, A path method for finding energy barriers and minimum energy paths in complex micromagnetic systems, J. Magn. Magn. Mater. 250, 12 (2002)

    ADS  Article  Google Scholar 

  144. 144.

    μMAG standard problem #4. https://www.ctcms.nist.gov/~rdm/std4/spec4.html (accessed 2019/02/04)

  145. 145.

    μMAG standard problem #5. https://www.ctcms.nist.gov/~rdm/std5/spec5.xhtml (accessed 2019/02/04)

  146. 146.

    M. Najafi, B. Krüger, S. Bohlens, M. Franchin, H. Fangohr, A. Vanhaverbeke, R. Allenspach, M. Bolte, U. Merkt, D. Pfannkuche et al., Proposal for a standard problem for micromagnetic simulations including spin-transfer torque, J. Appl. Phys. 105, 113914 (2009)

    ADS  Article  Google Scholar 

  147. 147.

    A. Shpiro, P.M. Levy, S. Zhang, Self-consistent treatment of nonequilibrium spin torques in magnetic multilayers, Phys. Rev. B 67, 104430 (2003)

    ADS  Article  Google Scholar 

  148. 148.

    X. Zhu, J.-G. Zhu, Bias-field-free microwave oscillator driven by perpendicularly polarized spin current, IEEE Trans. Magn. 42, 2670 (2006)

    ADS  Article  Google Scholar 

  149. 149.

    V. Pribiag, I. Krivorotov, G. Fuchs, P. Braganca, O. Ozatay, J. Sankey, D. Ralph, R. Buhrman, Magnetic vortex oscillator driven by dc spin-polarized current, Nat. Phys. 3, 498 (2007)

    Article  Google Scholar 

  150. 150.

    I. Firastrau, D. Gusakova, D. Houssameddine, U. Ebels, M.-C. Cyrille, B. Delaet, B. Dieny, O. Redon, J.-C. Toussaint, L. Buda-Prejbeanu, Modeling of the perpendicular polarizer-planar free layer spin torque oscillator: micromagnetic simulations, Phys. Rev. B 78, 024437 (2008)

    ADS  Article  Google Scholar 

  151. 151.

    L. Liu, C.-F. Pai, Y. Li, H. Tseng, D. Ralph, R. Buhrman, Spin-torque switching with the giant spin Hall effect of tantalum, Science 336, 555 (2012)

    ADS  Article  Google Scholar 

  152. 152.

    M. Cubukcu, O. Boulle, M. Drouard, K. Garello, C. Onur Avci, I. Mihai Miron, J. Langer, B. Ocker, P. Gambardella, G. Gaudin, Spin-orbit torque magnetization switching of a three-terminal perpendicular magnetic tunnel junction, Appl. Phys. Lett. 104, 042406 (2014)

    ADS  Article  Google Scholar 

Download references


Open access funding provided by University of Vienna.

Author information



Corresponding author

Correspondence to Claas Abert.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abert, C. Micromagnetics and spintronics: models and numerical methods. Eur. Phys. J. B 92, 120 (2019). https://doi.org/10.1140/epjb/e2019-90599-6

Download citation


  • Mesoscopic and Nanoscale Systems